
High-Order Discontinuous Galerkin
Method on Hexahedral Elements for

Aeroacoustics



High-Order Discontinuous Galerkin Method on Hexahedral Elements for Aeroacoustics
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INTRODUCTION

1.1 Acoustics and aeroacoustics

Acoustics is defined as the science of sound, its production, transmission and effects
[6]. The most familiar acoustics phenomenon is that associated with the sensation
of sound. For the average young person, a vibrational disturbance isinterpreted as
sound if its frequency lies in the range between about 20 to 20,000 Hz (1Hz= 1
hertz = 1 cycle/second). However, in a broader sense acoustics also includes the
ultrasonic frequencies above 20,000 Hz andinfrasonic frequencies below 20 Hz.
Acoustics is distinguished from optics in that sound is a mechanical, rather than an
electromagnetic, wave motion.

Sound is characterized by its intensity, expressed in decibels (dB). On thelogarith-
mic decibel scale, an increase of 3 dB means that the intensity of noise has doubled.
The human ear is able to distinguish a large range of noise intensity, from 1 dBto
about 125 dB (threshold of pain).

The mathematical theory of sound propagation began with Isaac Newton (1643-
1727), whose Principia (1686) included a mechanical interpretation of sound as be-
ing ”pressure” pulses transmitted through neighboring fluid particles. Substantial
progress towards the development of a viable theory of sound propagation, resting on
a firmer mathematical and physical concepts, was made during the eighteenth century
by Euler (1707-1783), Lagrange (1736-1813) and d’Alembert (1717-1783) [88]. In
the nineteenth century the science of acoustics was developed thoroughly, Stokes and
Rayleigh being the subject’s greatest contributors.

In his two famous papers [73, 74] Lighthill (1927-1998) described the phenom-
enon of sound production by a turbulent flow, which marked the beginningof aeroa-
coustics. The analogy, that Lighthill derived, identifies aerodynamic sources of sound
by representing the complex fluid mechanical process that acts as an acoustic source
by an acoustical equivalent source term for the non-homogeneous wave equation. In
this approach, the sound is generated by the deviation between the actual flow and a
reference ideal acoustical field which is an extrapolation of the acoustical field at the
position of listener. Lighthill’s analogy is a very general definition that Hirschberg
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[55] led to state ”aeroacoustics is the art of finding approximations which are optimal
for the calculation of the sound produced by a flow”.

1.2 Computational Aeroacoustics

Sound generated by flow is a serious problem in many engineering applications. Most
of the sounds of engineering interest cause human discomfort. The most notorious
examples are flow noise by powerful machinery and jet engines. The tightening reg-
ulations of airport noise also make the area interesting from an engineeringpoint of
view. With advances in jet-noise reduction (e.g. by increasing the bypass ratio of
turbofan engines), other components of overall noise have increasedin significance
namely, fan noise, airframe noise (including noise from flaps, slats and landing gear)
especially during landing (at lower speeds). Other examples of flow-generated sound
include the noise from wind turbines, fans in rotating machines and helicopterro-
tors, as well as automobile noise and noise from combustion instabilities and wind
instruments.

In the light of the mentioned engineering problems the broad goal of Computa-
tional Aeroacostics (CAA) can be identified as to enable aeroacoustics predictions in
these variety of flows and engineering devices and to advance our understanding of
the sound generation process in general [37].

When these variety of flows are considered it is necessary to make some simplifi-
cations in order to attack a CAA problem. Classifying the problem according tothe
sound generation mechanism, is a first step. Problem types could be grouped as lin-
ear and nonlinear in general. Linear problems involve for example sound propagation
in a uniform medium including reflecting/absorbing surfaces and the propagation of
sound in a non-uniform medium. The non-uniformity also includes the state of the
flow about which it is linearized which does not need to be uniform. In some cases
small perturbations may lead to phenomena for which the linear approximation no
longer holds. This includes problems of nonlinear wave propagation, scattering of
nonlinear disturbances into sound, noise from turbulent boundary layers, flow sepa-
ration and acoustically induced instabilities and resonances. Some examples of the
nonlinear propagation problems involve nonlinear steepening of waves leading to the
formation of shock waves, viscous effects at high sound intensities, sound propaga-
tion in multi-phase flows, thermo-acoustics, propagation of the sonic boom through
atmospheric turbulence, etc. Airframe noise and rotorcraft noise are some examples
of nonlinear scattering problems.

Computational techniques for sound generation problems can be classifieddepend-
ing on whether or not the sound is computed together with the flow field that includes
the fluid dynamic sources of sound. In case the aim is to compute the unsteadyflow
and the sound together a direct computational approach is used. In this approach the
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flow region including the source field and at least a part of the near-acoustic-field
must be included. There are two direct computational approaches, the direct numeri-
cal simulation (DNS) and the large eddy simulation (LES). DNS resolves the dynam-
ics of all flow scales of the turbulent flow including the small dissipative scales. LES
resolves the range of the scales of the energy-containing eddies that are dynamically
important flow scales and models the smaller scales and their effect on the resolved
scales by a subgrid model. DNS directly provides the near-acoustic-field while LES
gives the sound field associated with the dynamics that have been captured. By using
different analytical and numerical techniques it is possible to extend the near-fields
obtained by direct computation to the acoustical far-field. Numerical techniques in-
volve solutions of simplified equations (such as linearized Euler equations, LEE) in
extended domain around the near-field region. In the extended domain a mesh is used
that is more appropriate for far-field sound propagation. If the wave equation is sat-
isfied at the edge of the simulation, domain the Kirchoff integral can be used tosolve
the wave equation analytically. In any case the computational cost is large due to the
need of sufficiently fine meshes covering a large computational domain.

An alternative to the direct computation is using a hybrid method in which the
computation of the flow is decoupled from the computation of the sound field. The
computation of the sound field is achieved by using an aeroacoustic theory or flow-
field decomposition. It is assumed that there is no feedback from the soundfield to
the flow field, i.e. a one-way coupling is assumed. This assumption leads to a restric-
tion of the flow types to flows at low fluctuating Mach numbers. In the hybrid method
the space-time history of the flow field is calculated with methods like DNS, LES, un-
steady Reynolds-averaged Navier-Stokes (RANS), and vortex methods, from which
time-accurate turbulence data is also extracted. The sound sources are then calculated
using the time-accurate turbulence data. As a last step the radiated sound field is pre-
dicted either by an acoustic analogy or by solving the LEE with the calculated sound
sources included as the source terms within LEE. An alternative approachis to use
a steady RANS instead of time-accurate flow simulation and calculate the acoustic
source terms with a statistical model in order to reduce the high computational cost of
the time-accurate flow simulation. For broader reviews on CAA the reader is referred
to a number of review articles such as Colonius & Lele[38], Colonius[37],Kurbatskii
& Mankbadi[69], Tam[103, 105], Wang et al.[112] and Wells & Renaut[113].

1.3 Objective and motivation

The objective of this thesis is to develop and verify a higher-order numerical method
to compute the propagation of acoustic information in a three-dimensional domain
which may involve complex geometries.

In most applications the acoustic amplitude is small compared to the mean pressure
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level and the sound propagation can be studied by the use of the linearizedequations
describing the fluid motion. Although attenuation of sound waves increases with
increasing frequency, the effect of viscosity on the propagation of sound can be ne-
glected, as a first approximation, so that we can utilize the flow model based on LEE.

Computational methods for aeroacoustics require more accuracy than the usual
second-order computational fluid dynamics methods. Although finite-difference meth-
ods could be used for higher-order accuracies, they need special treatments at the
boundaries and usually require a smooth, structured mesh. This requirement is a
problem when complex geometries are present within the computational domain.

In this thesis a quadrature-free implementation of the discontinuous Galerkin method,
as developed by Atkins & Shu[8, 10], is used for the spatial discretizationof the three-
dimensional LEE. For the time integration a multi-stage low-storage Runge-Kutta
scheme is employed.

The discontinuous Galerkin method has some remarkable advantages due to the
flexibility in discretization of domains with complex geometries. The discontinuous
Galerkin method is a highly compact formulation that perfectly suited for obtaining
the high accuracy desired for computational aeroacoustics on non-smooth unstruc-
tured grids. The boundary conditions can be treated relatively simple, which is of
importance in order to obtain uniform high order accuracy at the boundaries of com-
plex geometries.

In the discontinuous Galerkin approximation the solution domain is divided into
non-overlapping elements and the solution in each element is approximated via alo-
cal basis function set. Thus the governing equations are solved in a finite element
space of discontinuous functions. The degree of the approximating polynomials (lo-
cal basis function set) determines the order of accuracy of the method and, if desired,
the degree of the polynomials used can be easily changed from element to element.
In the present thesis the LEE are solved on a hexahedral mesh and the order of accu-
racy of the spatial discretization (degree of approximating polynomials) is arbitrary.
The discontinuity between the elements can be treated by introducing the solutionof
the Riemann problem at the element interfaces.

Another advantage of the method is that it is highly parallelizable. The mass matrix
can be inverted once and for all and in order to update the solution in each element
only the elements sharing the same interface are involved, so the communication
between the CPU-units of a parallel system can be kept to a minimum.

The developed numerical method is the third step of the so-called three-step method
in order to predict the sound field due to an unsteady flow field. As explained above
in the first step the flow field is computed either with a time-accurate computational
method or a time averaged RANS method and in the second step the aeroacoustic
sources are obtained from the results of the first step and used as sound sources input
for the developed method for solving the LEE in the third step.
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The present research builds on the earlier work of Blom[25] who developed a
second-order method for solving the LEE on unstructured tetrahedral meshes em-
ploying the discontinuous Galerkin method.

1.4 Outline of the thesis

In chapter 2 the equations of motion and the equation of state are described and the
dimensionless form of the equations is presented. Furthermore the approximations
that lead to the Euler equations are given and finally the linearization process is de-
scribed that results in the linearized Euler equations (LEE).

In chapter 3 the discontinuous Galerkin finite-element formulation used for the
spatial discretization is presented for an arbitrary order of accuracy interms of the
truncation error. Furthermore the evaluation of integrals involving products of the
basis functions are described. Also the treatment of boundary and initial conditions
is given. Finally the multi-stage low-storage Runge-Kutta time discretization method
is described.

Verification is always the first goal in developing a numerical algorithm. Con-
vection of a one-dimensional Gaussian pulse, chosen as a verification problem, is
discussed in chapter 4. The analytical solution of the problem is presentedin two
alternative routes and the numerical results are compared with the analyticalsolu-
tion. Chapter 4 also includes studies on the numerical dispersion and the CPU-time
requirements of the method.

In chapter 5 the problem of acoustic radiation from a vibrating wall segmentinside
an infinite rectangular duct is considered. The relation between the wall motion and
the normal velocity profile used as a linearized boundary condition for the vibrating
wall segment is explained in some detail. The numerical solution that is obtained
for a hexahedral mesh, which is used throughout this thesis is compared tothe results
obtained by Blom[25, 26] using a similar method for a tetrahedral mesh. Comparison
between the numerical result and the analytical solution is also presented. Further-
more a grid convergence (h-refinement) and ap-refinement study is reported on.

Effects of non-parallelepiped elements, i.e. of grid distortion is investigated in
chapter 6, considering two cases. In the first case the grid is skewed ata certain angle
while keeping the shape of the elements as parallelepiped and in the second case the
grid is randomly distorted, violating the present restriction of the implementation of
the method to cases for which the transformation of the elements in the physical space
to the unit element in computational space is linear. This implies that the present
mapping is exact for parallelepiped elements but approximate for more elementsof a
more general shape.

In chapter 7 the discontinuous Galerkin method is applied to an acoustic liner



6 CHAPTER 1. INTRODUCTION

problem. Here we consider a single orifice in a plate inside a long duct. The results
are compared to the analytical solution obtained by Kooijman et al.[64].

Finally in chapter 8 concluding remarks and recommendations for future research
are presented .
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2.1 Introduction

In general, flows can be described by means of the equations of motion, describing
transport of e.g. mass, momentum and energy. This also holds for the acoustic prob-
lems. However, (aero-)acoustic problems considered in this thesis concerned with
the sound propagation in air where the viscosity does not play a significantrole (as
described in section 2.4). Under this assumption the equations of motion, loosely
called the Navier-Stokes equations (formally only the momentum equation is named
after Navier (1785-1836) and Stokes (1819-1903)), reduces to theEuler equations.

In most application the acoustic amplitude is very small relative to the mean pres-
sure ([42, 75, 95]) and the sound propagation can be studied by the use of the lin-
earized approximation of the equations describing the fluid motion.

The equations of motion and the equations of state are described in section 2.2and
the dimensionless form of equations of motion are presented in section 2.3. The Euler
equations and the linearization process is shown in sections 2.4 and 2.5 respectively.

2.2 Conservation Laws and Constitutive Equations

In continuum fluid dynamics, the equations governing physical quantities such as
velocity, density, pressure and temperature, will be considered to vary continuously
from point to point throughout the fluid. We assume that we can define a ”fluid
particle” which we can assign these macroscopic properties that we associate with
the fluid in bulk. In addition the fluid particle is assumed to be large compared to
molecular scales but small compared to the global length scales. We then can describe
the fluid motion by using the laws of mass, momentum and energy conservation
applied to an elementary fluid particle.

Employing index notation and Cartesian coordinates, we have for the mass conser-
vation in differential form
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∂ρ

∂t
+

∂

∂xi
(ρui) = Sm, (2.1)

whereρ is the fluid density,ui is the flow velocity andSm is the mass source term.
In general the mass source term,Sm = 0, however, some processes like the action of
a pulsating sphere or of mass injection are represented by the mass sourcetermSm.

The momentum conservation law is

∂

∂t
(ρui) +

∂

∂xj
(Pij + ρujui) = Si, i = 1, 2, 3, (2.2)

where,Si is an external force density andPij is

Pij = pδij − τij , (2.3)

with p pressure,δij is the Kronecker∗ delta andτij is the viscous stress tensor. When
the relation betweenτij and the deformation rate of the fluid element is linear the
fluid is described as Newtonian and the resulting momentum conservation equation
Eq. (2.2) is referred to as the Navier-Stokes equation. Employing Stokes’hypothesis,
that the fluid is in local thermodynamic equilibrium, so that the pressurep and the
thermodynamic pressure are equivalent, which leads to the viscous stresstensor of
the form

τij = µ

(

∂ui

∂xj
+
∂uj

∂xi

)

− 2

3
µ

(

∂uk

∂xk

)

δij , (2.4)

where,µ is the dynamic viscosity and depends on temperature and pressure.µ is
assumed constant throughout this study.

The energy conservation law is given by

∂ρE

∂t
+

∂

∂xj
(ρHuj − τijui + qj) = Se, (2.5)

where, the internal energy,e, is related to the total energy,E, and total enthalpy,H,
by:

E ≡ e+
1

2
ukuk, (2.6)

and

H ≡ E +
p

ρ
. (2.7)

∗δij = 1 if i = j, δij = 0 if i 6= j.
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In Eq. (2.5),qj is the heat flux due to heat conduction and is for example defined by
Fourier’s law as

qj = −κ ∂T
∂xj

, (2.8)

whereκ is the heat conductivity coefficient which depends on pressure.
We will assume air to behave as a calorically perfect gas, i.e. the following relas-

tions are valid:

p = ρRT, (2.9)

e = cvT, (2.10)

whereR is the specific gas constant, withR = cp − cv andcp andcv are the specific
heats at constant pressure and volume, respectively.

2.3 Navier-Stokes Equations in Dimensionless Form

The Navier-Stokes equations can be written in dimensionless form by introducing
scaling parameters for length, mass, time and temperature. Here we choose as refer-
ence quantities: lengthL, densityρ0, velocityU and temperatureT0. This analysis
results in the following set of dimensionless equations:

∂ρ̄

∂t̄
+

∂

∂x̄j
(ρ̄ūj) = S̄m, (2.11)

∂(ρ̄ūi)

∂t̄
+

∂

∂x̄j
(ρ̄ūj ūi + p̄δij − τ̄ij) = S̄i, i = 1, 2, 3, (2.12)

∂(ρ̄Ē)

∂t̄
+

∂

∂x̄j
(ρ̄H̄ūj − τ̄ij ūi + q̄j) = S̄e, (2.13)

with, the dimensionless source terms:

S̄m =
SmL

ρ0U
, S̄i =

SiL

ρ0U2
, S̄e =

SeL

ρ0U3
. (2.14)

The dimensionless viscous stress term is written as

τ̄ij = µ̄

(

∂ūi

∂x̄j
+
∂ūj

∂x̄i
− 2

3

∂ūk

∂x̄k
δij

)

, (2.15)

with,

µ̄ =
µ

ρ0UL
≡ 1

ReL
, (2.16)
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and the heat flux

q̄j = −κ̄ ∂T̄
∂x̄j

, (2.17)

with,

κ̄ =
κT0

ρ0U3L
. (2.18)

Upon identifyingλ as a characteristic length scale andλf as a characteristic velocity
scale,µ̄−1 can be interpreted as anacoustic Reynolds numberReλ:

Reλ =
ρ0(λf)λ

µ
=
ρ0λ

2f

µ
=
λ2f

ν
, (2.19)

where,

λ ≡
√
cvT0

f
, (2.20)

andλf =
√
cvT0 represents a characteristic velocity scale withf , the frequency of

an acoustic wave. By these scaling factorsκ̄ can be rewritten in the following form

κ̄ =
µ

ρ0λ2f

κT0

µ

1

λ2f2
. (2.21)

κ̄ can be rearranged to get

κ̄ =
1

Reλ

γ

Pr
, (2.22)

where, the Prandtl number is defined as

Pr =
µcp
κ
, (2.23)

and the ratio of the specific heats,γ:

γ =
cp
cv
. (2.24)

2.4 Euler Equations

In a sound field the pressure represents a far greater stress field thanthat induced
by viscosity at frequencies of most practical interest. The ratio of the two stresses is
the Reynolds number which is given in Eq. (2.19). For airν = 1.5 · 10−5m2/s so
that for f = 1 kHz we haveReλ = 4 · 107 so sound has to travelλ = 107 wave
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lengths or more for the viscosity to play a significant role. Schreier [97] has analyzed
the effect of viscosity on a small pressure wave propagating into a medium at rest
in 1D and concluded that in air, at any rate, the viscosity has very little effect on
the velocity at which the sound wave propagates. In practice the kinematic viscosity
appears to be a rather unimportant effect in the attenuation of waves in free space.
Therefore, neglecting the viscosity effects results in the Euler equations of the form:

∂ρ̄

∂t̄
+

∂

∂x̄j
(ρ̄ūj) = S̄m, (2.25)

∂(ρ̄ūi)

∂t̄
+

∂

∂x̄j
(ρ̄ūj ūi + p̄δij) = S̄i, i = 1, 2, 3, (2.26)

∂(ρ̄Ē)

∂t̄
+

∂

∂x̄j
(ρ̄H̄ūj) = S̄e, (2.27)

2.5 Linearization of the Euler Equations

A sound wave disturbs the fluid from its mean state while it propagates. When we
consider the state of the fluid at rest with a uniform pressurep0 and densityρ0 the
sound wave perturbs the pressure byp0 + p′(x, t) and the density byρ0 + ρ′(x, t).
The ratios|p′/p0| and|ρ′/ρ0| are much less than unity so the disturbances are small.

Although always weak, the range of amplitudes commonly experienced in sound
waves is very great, e.g. typical audible sound power level for human hear range
from 10−12W to about105W [42, 95]. Because of this very wide range of levels it
is customary to describe sound powers through the use of logarithmic scalesknown
assound levels. The Sound Power Level (PWL) is given in decibels (dB) by:

PWL = 10 log10 (P/Pref ). (2.28)

with P the Power inW andPref = 10−12W . The Sound Pressure Level (SPL) is a
measure of the mean square level of the acoustic fluctuation and is defined as

SPL = 20 log10

(

|p′|
pref

)

, (2.29)

where, the reference pressurepref = 2 × 10−5N/m2. When the pressure fluctu-
ations are equal in magnitude to the mean pressure,|p′| = p0 ≡ 1 atmosphere
(= 105N/m2) the sound pressure level is equivalent to194 dB. The threshold of
pain is between130 dB and140 dB [42, 75, 95] corresponding to a pressure varia-
tion of amplitude around|p′|/p0 = 10−3.
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As can be seen from these examples in most applications the acoustic amplitude is
very small relative to the mean pressurep0 (|p′|/p0 ≪ 1), and the sound propagation
can be studied by the use of the linearized approximation of the equations describing
the fluid motion.

The Euler equations can be written in terms of primitive variables in index notation
as follows:

∂ρ

∂t
+ uj

∂ρ

∂xj
+ ρ

∂uj

∂xj
= Sm, (2.30)

∂ui

∂t
+ uj

∂ui

∂xj
+

1

ρ

∂p

∂xi
=

1

ρ
(Si − uiSm), i = 1, 2, 3, (2.31)

∂p

∂t
+ uj

∂p

∂xj
+ γp

∂uj

∂xj
= (γ − 1)

{

Se − uiSi +
1

2
uiuiSm

}

. (2.32)

The Euler equations can be linearized assuming the aeroacoustic perturbations (ρ′, u′i,
p′) to be small compared to the mean flow properties (ρ0, ui0, p0). As an example,
assumingρ0 to be of the orderO(1), it can be written that|ρ′| = |ρ0|O(ε), with
ε ≪ 1. In order to linearize the Euler equations the following expressions will be
used:

ρ = ρ0 + ρ′, ui = ui0 + u′i,

p = p0 + p′, S = S0 + S ′. (2.33)

It will also be assumed that the mean flow quantities satisfy the Euler equations and
the terms higher than orderO(ε) can be neglected.

Substituting (2.33) into Eq. (2.30) and linearizing gives for the continuity equation:

O(1) :
∂ρ0

∂t
+ uj0

∂ρ0

∂xj
+ ρ0

∂uj0

∂xj
= Sm0

,

O(ε) :
∂ρ′

∂t
+ u′j

∂ρ0

∂xj
+ uj0

∂ρ′

∂xj
+ ρ′

∂uj0

∂xj
+ ρ0

∂u′j
∂xj

= S′
m. (2.34)

The momentum equation can be written in linearized form as:

O(1) :
∂ui0

∂t
+ uj0

∂ui0

∂xj
+

1

ρ0

∂p0

∂xi
=

1

ρ0
(Si0 − ui0Sm0

),

O(ε) :
∂u′i
∂t

+ u′j
∂ui0

∂t
+ uj0

∂u′i
∂t

+
1

ρ0

∂p′

∂xi
− ρ′

ρ0

∂p0

∂xi

=
1

ρ0
(ui0S

′
m0 + u′iSm0) +

ρ′

ρ2
0

(ui0Sm0
− ui0Si0).(2.35)
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Finally the energy equation in linearized form is

O(1) :
∂p0

∂t
+ uj0

∂p0

∂xi
+ γp0

∂uj0

∂xj
= (γ − 1)(Se0 − ui0Si0 +

1

2
ui0ui0Sm0

),

O(ε) :
∂p′

∂t
+ u′j

∂p0

∂xi
+ uj0

∂p′

∂xi
+ γp0

∂u′j
∂xj

+ γp′
∂uj0

∂xj

= (γ − 1)(S′
e − ui0S

′
i − u′iSi0

+
1

2
(ui0ui0S

′
m + ui0u

′
iSm0 + u′iui0Smo)). (2.36)

In this thesis the mean flow will be assumed to be uniform (or piecewise constant
in discrete form) so that the derivatives of the mean flow properties are zero. Under
this assumption combining Eq.(2.34, 2.35 and 2.36) the three-dimensional linearized
Euler equations can be written as:

L(u) =
∂u

∂t
+
∂fi(u)

∂xi
= s, u(~x, t) ∈ R5, ~x ∈ Ω, t ∈ It. (2.37)

The solution vectoru = (ρ′, u′1, u
′
2, u

′
3, p

′) whereρ′, u′1, u′2, u′3, andp′ denote the
aeroacoustic density, velocities and pressure perturbations, respectively ands (∈ R5)
is the source term for theLEE. The perturbationu can be described with respect to
the mean flowu0 where,

fi(u) = Ai(u0)u, Ai ∈ R5 ×R5. (2.38)

The matricesAi = (A1, A2, A3)
T are defined as:

Ai(u0) =















u0i δi1ρ0 δi2ρ0 δi3ρ0 0
0 u0i 0 0 δ1i/ρ0

0 0 u0i 0 δ2i/ρ0

0 0 0 u0i δ3i/ρ0

0 δi1γp0 δi2γp0 δi3γp0 u0i















, i = 1, 2, 3, (2.39)

ρ0, u01, u02, u03 andp0 are the mean flow density, velocities and pressure, respec-
tively.

Here, the linearization has been performed starting from the Euler equations in
primitive variables form. It is also possible to linearize the Euler equations in differ-
ent forms. For further details the reader is referred to the PhD thesis by Blom [25]
where such a detailed analysis has been performed. Blom discussed the linearization
of the Euler equations starting from conservation form for conservative variables,
quasi-linear form for conservative variables and for primitive variables. Furthermore
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he derived three different formulations for linearizing the Euler equations in conser-
vation form for conservative variables.
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3.1 Introduction

Compared to computational fluid dynamics the accuracy of numerical methods for
aeroacoustics require special attention in the sense that numerical dispersion and dis-
sipation errors are much more critical. Although finite-difference methods could be
used to achieve higher-order accuracy, they need special treatments at the boundaries
and usually require smooth, structured meshes. Especially when the problem of inter-
est involves complex geometries this requirement cannot be met. The Discontinuous
Galerkin (DG) method [8, 30, 62] has some remarkable advantages with respect to
flexibility in discretization of domains with complex geometries.

TheDG method is a highly compact finite-element projection method. The solution
within an element is reconstructed by looking at the element itself and the communi-
cation is achieved only with the direct neighbors through the approximate Riemann
flux. The size of the stencil is fixed and independent of the desired order of accuracy.

The method is better suited than the finite-difference methods to handle compli-
cated geometries. Moreover, the treatment of the boundary conditions is relatively
simple (no special treatment required), and obtaining uniform high-orderaccuracy at
the boundaries involving complex geometries is feasible. The method can be easily
applied to both structured and unstructured meshes.

The DG method provides a practical framework for the development of a higher-
order method desired for computational aeroacoustics on non-smooth unstructured
grids [9, 24, 59, 82, 83, 84, 85]. The high-order accuracy can beobtained by em-
ploying high-degree of approximating polynomials within an element. The degree
of the approximating polynomials can be easily changed from one element to the
other. The local grid refinement (h-refinement) and the local-degree-variation (p-
refinement) (Flaherty et al. [46], van der Vegt & van der Ven [109] and Süli et al.
[100]) can be applied.

The discontinuity in the elements leads to a block diagonal matrix and since the
size of the blocks is equal to the number of degrees of freedom inside the element
considered the block can be inverted easily once and for all. This simple handling of



16 CHAPTER 3. DISCONTINUOUSGALERKIN FORMULATION

the mass matrix makes the method highly parallelizable.

Although the originalDG method introduced by Reed and Hill [91] in 1973, the
method has increasingly become popular since the beginning of 1990s. Reed and
Hill applied the method in the framework of transport of neutrons. In 1974 LeSaint
and Raviart [72] made the first analysis of theDG method and proved its rate of
convergence to be at leasthp for general triangulations andhp+1 for Cartesian grids
employing basis polynomials up to orderp, whereh is a length scale that represents
the size of elements. In 1986, Johnson and Pitkäranta [62] proved a rate of conver-
gence of at leasthp+ 1

2 for general triangulations and in 1988 Richter [93] obtained
the optimal rate of convergence ofhp+1 for a semi-uniform triangulation. In 1991 Pe-
terson [87] numerically confirmed that this rate of convergence cannot be improved
within the class of quasi-uniform meshes.

All the above mentioned studies are confined to linear equations. The first analy-
sis of theDG method as applied to a non-linear scalar hyperbolic equation is due
to Chavent and Cockburn [29]. Cockburn et al. [31] extended their analysis to a
one-dimensional system of conservation laws, and Cockburn et al. [32] further ex-
tended it to the multidimensional scalar case, and in 1998 Cockburn and Shu [34]
treated the multidimensional systems. In 1998 Atkins and Shu [10] performed the
first quadrature-free implementation of theDG method and showed that this formula-
tion requires less storage and computational time.

Biswas, Devine and Flaherty [20] and Adjerid, Affia and Flaherty [3] showed
super-convergence of the method on Gauss-Radau points. Lowrie [77] also reported
numerical results of orderh2p+1 convergence. Recently, Cockburn et al. showed the
possibility of obtaining a rate of convergence ofh2p+1 by a suitable post processing
of the numerical solution.

Concerning the issue of wave propagation of theDG method there have been rela-
tively fewer works. Johnson & Pitk̈aranta [62] performed a Fourier analysis of theDG

method for the case ofp = 1. Lowrie [78] performed a Fourier analysis of a space-
time discontinuous Galerkin scheme for a one-dimensional scalar advection equation
up to p = 3. In [59], Hu, Hussaini and Rasetarinera studied numerical dissipation
and dispertion errors of theDG method for one- and two-dimensional wave equations.
In a recent work by Rasetarinera, Hussaini and Hu [90], it was further demonstrated
numerically that dissipation errors of theDG method decay at orderh2p+2 (locally)
when the exact characteristic splitting formula is used. Sherwin [98] has carried out a
Fourier analysis which gave exact expression of the numerical frequency analytically
up top = 3 and numerically forp = 10.

In Hagmeijer et al. [50], the governing characteristic polynomial is identifiedfor
any orderp for the semi-discrete algorithm obtained from applying theDG method
to the one-dimensional scalar advection equation, where the exact formulation of the
Riemann problem at element interfaces is used. Blom [25] has extended thiswork
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employing Lax-Friedrichs flux at element interfaces rather than the exactsolution of
the Riemann problem. Blom showed that as long as the basis function span the same
approximate solution space, the characteristic polynomial is identical regardless of
the kind of polynomial basis used.

There are also some examples of theDG method applied to CFD problems. Halt
and Agarwal [51] applied the method of moments which is similar to theDG method,
to the steady two-dimensional Euler equations for subsonic flows. Bassi and Rebay
first applied theDG method to two-dimensional Euler equations in transonic flows
([15]) and than extended to the Navier-Stokes equations ([16]). TheDG method ap-
plied to three-dimensional Euler equations by van der Vegt [107]. Later,van der Vegt
and van der Venn [108, 109] applied the space-time discontinuous Galerkin method
for the solution of the Euler equations in time-dependent flow domains.

In section 3.2 the discontinuous Galerkin space discetization of the linearizedEuler
equations is presented. In section 3.3 and section 3.4 the treatment of boundary con-
ditions and initial condition are presented respectively. Finally the multi-stage low-
storage Runge-Kutta time integration algorithm is described in section 3.5.

3.2 Discontinuous Galerkin Discretization

We would like to discretise the Linearized Euler Equations (LEE) (Eq. 2.37) in
space, employing the Discontinuous Galerkin (DG) method in a regionΩ. We con-
sider a solutionu(·, t) such that for each timet ∈ It, u(·, t) belongs to the function
spaceU of the form

u(·, t) ∈ U5, U ≡ L2(Ω), (3.1)

whereL2(Ω) denotes a Hilbert space of all square integrable functions onΩ with an
associated inner product defined by ([65]):

(f, g)Ω ≡
∫

Ω

f(x)g(x)dΩ, f, g ∈ L2(Ω). (3.2)

The weak formulation of theLEE can now be written as ([27])

(L(u(·, t)),v) = (s,v), ∀v ∈ U5. (3.3)

In order to discretise theLEE we divide the solution domainΩ into non-overlapping
hexahedral elementsΩj such that

Ω̄ =
Ne
⋃

j=1

Ω̄j , (3.4)
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whereΩj = Ωj ∪ ∂Ωj is the closure ofΩj and the boundary∂Ωj belongs to at most
two elements andNe denotes the number of elements. We consider an approximate
solutionuh(·, t) to the solutionu(·, t) in the following form

uh(·, t) ∈ U5
h , Uh = span{bjk} ⊂ U, (3.5)

whereUh is a finite-dimensional subspace ofU . The functions{bjk} are linearly
independent basis functions defined such that

bjk ≡
{

bjk(x), x /∈ ∂Ωj ,
0, x ∈ ∂Ωj .

(3.6)

bjk(x) = 0, x /∈ Ωj , (3.7)

The functions̄bjk andbjk differ only in thatbjk = 0 on the boundary∂Ωj while in
general̄bjk 6= 0 on the boundary∂Ωj . The basis functions are continuous inΩj and
k = 0, 1, ..,M is the index of the polynomials where the upper limit is defined as;

M(p, d) =
1

d!

d
∏

l=1

(p+ l), (3.8)

with d the number of space dimensions andp the highest degree of the polynomials
used, withj fixed. We consider the approximate solutionuh(·, t), in Ωj , of the
solutionu(·, t) as an expansion on to the basis set{bjk}

uh(x, t) = ujk(t)bjk(x), ujk(t) ∈ L2(It), bjk ∈ L2(Ω), (3.9)

where,ujk are the solution expansion coefficients or the degrees of freedom for the
solution onΩj and functions of time only in this semi-discrete approach.

It is noted that we employ the Einstein summation convention throughout this the-
sis, except for the index ”j”. Hence in Eq. (3.9) summation overk is implied, while
there is no summation overj.

We approximate the weak formulation (Eq. (3.3)) by replacing the solutionu(·, t)
with the approximate solutionuh(·, t)

(L(uh(·, t)),vh) = (s,vh), ∀vh ∈ U5
h . (3.10)

Since Eq. (3.10) holds forany functionvh ∈ U5
h we can replacevh by bjm ∈ U5

h to
get

(L(uh(·, t)), bjm) = (s, bjm), ∀j ∈ (1, 2, .., Ne), ∀m ∈ (0, 1, ..,M). (3.11)

Inserting Eq. (3.11) into Eq. (2.37) and integrating overΩ leads to
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∫

Ω

L(uh(x, t))bjmdΩ =

∫

Ω

sbjmdΩ, (3.12)

Integration by parts we get:

∫

Ωj

∂ujk

∂t
bjkbjmdΩ −

∫

Ωj

fi
∂bjm
∂xi

dΩ +

∫

Ωj

∂

∂xi
(fibjm) =

∫

Ωj

sbjmdΩ, (3.13)

and applying Gauss’ theorem to the third term gives,

∫

Ωj

∂ujk

∂t
bjkbjmdΩ −

∫

Ωj

fi
∂bjm
∂xi

dΩ +

∫

∂Ωj

bjmfinjidS =

∫

Ωj

sbjmdΩ. (3.14)

wherenji denotesith component of the unit outward normal vector on∂Ωj . For each
j, Eq. (3.14) contains only the unknownsujk(t), k = 0, ..,M , giving rise toNe sets
of (M + 1) ordinary differential equations for the functionsujk(t). The coupling
of the functionsujk(t) in neighboring elements is achieved by replacing the (normal
component of the) fluxfi in the surface integral term by a numerical flux

fi(uj)nji|x∈∂Ωjl
= h(ūj , ūl,nj) (3.15)

whereūj(x, t) ≡ ujk(t)b̄jk(x) andl ∈ Ij with

j /∈ Ij

l ∈ Ij ⇔ ∂Ωj ∩ ∂Ωl 6= ∅, j 6= l, (3.16)

where,Ij = {r1, r2, r3, r4, r5, r6} is the set of global indices, describing the direct
neighborhood elementsΩrl

and/or the domain boundary which coincides with the
element boundary∂Ωrl

of elementΩj . The common edges are denoted by∂Ωjl =
∂Ωj ∩ ∂Ωl, l ∈ Ij . The setIj has six elements. When one or more edges of the
hexahedraΩj belongs to the domain boundary∂Ω, the global index in the setIj then
refers to the boundary index. With Eq. (3.9) and Eq.(3.15), Eq. (3.14) isrecast as:

∫

Ωj

∂ujk

∂t
bjkbjmdΩ −

∫

Ωj

fi
∂bjm
∂xi

dΩ +

∫

∂Ωj

bjmhdS =

∫

Ωj

sbjmdΩ, ∀m, j. (3.17)

LeSaint and Raviart [72] made the first analysis of the Discontinuous Galerkin
method and proved its rate of convergence to be at leasthp for general triangulations
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andhp+1 for Cartesian grids employing basis polynomials up to orderp, whereh is
a length scale that represents the size of elements. Later, Johnson and Pitkäranta [62]
proved a rate of convergence of at leasthp+ 1

2 for general triangulations and Peterson
[87] numerically confirmed that this rate of convergence cannot be improved within
the class of quasi-uniform meshes. Richter [93] obtained the optimal rate ofconver-
gence ofhp+1 for a semi-uniform triangulation. Hence, when the method is applied
to a hexahedral mesh, the analysis of LeSaint and Raviart indicates that the method
is (p+ 1)th-order accurate.

3.2.1 Numerical flux

At any interface between two elements, since the solution is allowed to be discon-
tinuous, there is a left state and a right state leading to a Riemann problem whichis
represented by the flux vector as shown in Eq. (3.15). Solving the Riemannproblem
will provide the coupling and handle the discontinuity at element interfaces. Various
kinds of flux formulas have been proposed and used in the literature to approximate
the solution of the Riemann problem. In this study we will consider two commonly
used flux formulas: thecharacteristics-basedflux formula and theLax-Friedrichflux
formula.

The numerical fluxh(·, ·, ·) is assumed to be Lipschitz continuous§ and consistent
with finji, that is,

h(u,u,nj) = fi(u)nji, ∀u, (3.19)

and conservative, that is,

h(ūj , ūl,nj) = −h(ūl, ūj ,−nj). (3.20)

Thecharacteristics-basedflux formula is of the form

h(ūj , ūl,nj) =
1

2
{f(ūj) + f(ūl) − θAn(ūl − ūj)}, θ ≥ 0, (3.21)

whereθ is a scalar parameter andAn is the normal component of the matrixA.
Choosingθ = 1 leads to anexact characteristics splitting(the exact Roe solver)
where, on the other hand, choosingθ = 0 will result in a symmetric averaged scheme.

§If (X, || · ||) is a metric space, a functionW : X → R is said to be Lipschitz continuous, or
Lipschitzian, if for someM ∈ R,

|W (x) − W (x′)| ≤ M‖x − x
′‖, (3.18)

∀x, x′ ∈ X. M is said to be a Lipschitz constant forW . It is noted that this condition is stronger than
the more usual continuity condition.
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TheLax-Friedrichflux formula is of the form

h(ūj , ūl,nj) =
1

2
{f(ūj) + f(ūl) − θ|a|max(ūl − ūj)}, θ ≥ 0, (3.22)

where, |a|max is the maximum (absolute value) of the eigenvalues of the(5 × 5)
matrixA

n.
The boundary integral term in Eq. (3.17) can be evaluated numerically by applying

numerical quadrature formulas of the required order [36]. However,application of
quadrature rules is costly [10]. Atkins and Shu [8, 10] introduced the quadrature-
free implementation where the fluxes and source terms are expanded onto thebasis
functions as follows:

fi(u(x, t)) ≈ (fi)h =
Ne
∑

j=1

(fi)jkbjk, (3.23)

s(x, t) ≈ sh =
Ne
∑

j=1

sjkbjk, (3.24)

with k = 0, 1, .., M̄ , where the number of terms in the expansion,M̄ , depends on
the form of the nonlinearity infi. When the flux (and or the source) term are linear
functions ofu, the expansion is trivial and exact and̄M = M(p, d) whereM is given
in Eq. (3.8). When the flux is non-linear or linear with non-constant coefficients, the
flux can be expanded in a Taylor series, can be defined in terms of the projection
operator or alternatively the projection method can be used to determine the flux ex-
pansion directly. The details of these approaches can be found in [8] and [10]. In the
non-linear case the degree of the flux expansion has to be at leastp + 1 leading to
M̄ > M [8, 10].

3.2.2 Polynomial basis functions

The basis functions are defined on the ”master” or ”reference” elementΩ̂, in the
computational space. The local coordinates in the master element are givenby ξ =
(ξ, η, ζ)T and the coordinate system has its origin at the centroid of the hexahedron.
The physical coordinates in elementΩj are related to the computational coordinates
of the master element by the invertible map:

x
j : Ω̂ 7→ Ωj ,

x
j(ξ) = xj0 + Jjξ, Jj ∈ R

3 × R
3. (3.25)

Herexj0 = (xj0, yj0, zj0)
T
j denotes the location of the centroid of elementΩj (see

also Fig.(3.1)), relative to the fixed coordinate systemx = (x, y, z)T , defined for the



22 CHAPTER 3. DISCONTINUOUSGALERKIN FORMULATION

xj

jξ
Ω
_̂

ζ
η

ξ

z
y

x

Ωj

_

FIGURE 3.1: Transformation from physical to computational space coordinates.

whole domainΩ andJj is the Jacobian, a non-singular (3 × 3)-matrix with constant
coefficients. The JacobiansJj are in general different for each element.

The mapξj is the inverse ofxj :

ξj : Ωj 7→ Ω̂,

ξj(x) = J−1
j (x − xj0), ⇒ ξj(xj(ξ)) = ξ. (3.26)

In general the mapsxj andξj are nonlinear when completely general hexahedral ele-
ments are used, so the elements are restricted to parallelepiped which can be linearly
mapped into a cube. A schematic of both maps is given in Fig. (3.1).

On Ω̂ we define a set of linearly independent polynomials{bk(ξ, η, ζ)} of degree
≤ p:

{bk} = {ξk1ηk2ζk3 | 0 ≤ k1 + k2 + k3 ≤ p, ki ≥ 0}. (3.27)

The set{bk} is complete in the sense that it spansP̂p(Ω̂), the space of all polynomials

on Ω̂ with real coefficients and with a degree≤ p:

P̂p(Ω̂) = span{b0, b1, . . . , bM}. (3.28)

The set of basis functionsbjk are induced by the setbk as:

bjk(x) ≡ bk(ξ
j(x)), x ∈ Ωj . (3.29)
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3.2.3 Evaluation of integrals

Employing the linear representations given by Eq.(3.9) and Eq.(3.24), the individ-
ual terms in Eq.(3.17) can be evaluated.

• First integral :

The first integral of Eq.(3.17) is given by:

∫

Ωj

∂ujk

∂t
bjkbjmdΩ =

dujk

dt

∫

Ωj

bjkbjmdΩ. (3.30)

Employing the inverse of the linear mapxj , denoted byξj and defined by Eq.(3.26),
and the basis functionsbjk(x), we evaluate the remaining integral as:

∫

Ωj

bjk(x)bjm(x)dΩ =

∫

Ω̂

bk(ξ)bm(ξ)|Jj |dΩ̂. (3.31)

Recall that we have assumed|Jj | = constant per element in the previous section
leading to:

∫

Ωj

∂ujk

∂t
bjkbjmdΩ =

dujk

dt
|Jj |Mkm. (3.32)

with

Mkm ≡
∫

Ω̂

bk(ξ)bm(ξ)dΩ̂, (3.33)

so-called Mass matrix.

• Second integral:

The second integral of Eq.(3.17) is given by:

∫

Ωj

fi(uh)
∂bjm
∂xi

dΩ =

∫

Ωj

Aiujkbjk
∂bjm
∂xi

dΩ. (3.34)

Employing the relation∂
∂xi

= ∂ξl

∂xi

∂
∂ξl

and(Jj)il =
∂xj

i

∂ξl
, we get



24 CHAPTER 3. DISCONTINUOUSGALERKIN FORMULATION

∫

Ωj

Aiujkbjk
∂bjm
∂xi

dΩ =

∫

Ω̂

Aiujkbk(J
−T
j )il|Jj |

∂bm
∂ξl

dΩ̂. (3.35)

Assuming the mean flow is approximated as piecewise constant per element (Ai =
constant) the above equation can be evaluated as:

∫

Ω̂

Aiujkbk(J
−T
j )il|Jj |

∂bm
∂ξl

dΩ̂ = |Jj |Fjkmujk. (3.36)

where,

Fjkm = Ai(J
−T
j )il

∫

Ω̂

bk
∂bm
∂ξl

dΩ̂. (3.37)

• Third integral :

The third integral in Eq.(3.17) is given by:

∫

∂Ωj

h(uj ,ul,nj)bjmdΓ =
∑

l∈Ij

{ ∫

∂Ωjl

{

1

2

(

f
n
(uj) + f

n
(ul)

)

− 1

2
α

(

ul − uj

)}

bjmdΓ

}

=
∑

l∈Ij

{ ∫

∂Ωjl

{

1

2

(

Ainjiujk b̄jk +Ainjiulk b̄lk
)

−1

2
α (ulk − ujk)

}

b̄jmdΓ

}

. (3.38)

whereα = θ|a|max. ǫ is the index of the element faces whereǫ = 1, .., 6 for hexa-
hedra and,δΩǫ indicates the element surface. This integral is to be carried out over
each surface of the 6 faces of the hexahedra. When an element boundary coincides
with domain boundary than the flux term is calculated using the contribution fromthe
boundary condition instead of the adjacent element ”l”. As discussed in the previous
section we approximateAi = constant per element. On the interface between two
elements we use the average of the two states:

A
n

=
1

2

(

(An
i )L + (An

i )R
)

, An
i = Ainji. (3.39)

Rearranging Eq. (3.38) leads to
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∫

∂Ωj

h(uj ,ul,nj)bjmdΓ =
∑

l∈Ij

{

1

2

[

A
n

+ αI
]

ujk

∫

∂Ωjl

bjkbjmdΓ

+
1

2

[

A
n − αI

]

ulk

∫

∂Ωjl

blkbjmdΓ

}

, (3.40)

whereI is the (5 × 5)-identity matrix and the summation is over the faces of the
hexahedra.

For convenience, the surface integrals in the right-hand-side of Eq.(3.40) are eval-
uated on the reference squareΓ̂, which is shown in Fig.(3.2). The local coordinates
of the reference square are given byξ̂ = (ξ̂, η̂)T and the local coordinate system has
its origin at the centroid of the square. The six surfaces of the reference element are
also all squares. The surface area ofΓ̂ is equal to the surface area of∂Ω̂s. The surface
coordinates of∂Ω̂s, expressed in terms of the local element coordinates(ξ, η, ζ) of
the reference element̂Ω, are related to the local surface coordinates of the reference
squarêΓ by the map:

φs(ξ̂) : Γ̂ 7→ ∂Ω̂s,

φs(ξ̂) ≡ ξs0 + Φsξ̂, Φs ∈ R
2 × R

3, (3.41)

whereξs0 = (ξ0, η0, ζ0)
T
s represents the location of the centroid of the surface∂Ω̂s,

expressed in terms of the local element coordinates of the reference element Ω̂ and
where the indexs ∈ {1, 2, 3, 4, 5, 6} depends on the indices of the two adjacent
elementsΩj andΩl by:

s = s(j, l), (3.42)

and wheres(j, l) is such that

x
j(φs(Γ̂))) = ∂Ωjl, s = s(j, l). (3.43)

In Eq.(3.41)Φs is a (2×3)-matrix. In addition, we introduceψs, which is the inverse
map ofφs:

ψs(ξ) : ∂Ω̂s 7→ Γ̂,

ψs(ξ) ≡ (ΦT
s Φs)

−1ΦT
s (ξ − ξs0) ⇒ ψs(φs(ξ̂)) = ξ̂, (3.44)

where it is required thatdet(ΦT
s Φs) 6= 0. It is noted that since the matrixΦs is not

a square matrix it cannot be inverted. It can be shown that for all six mapsfrom the
faces∂Ω̂s to the reference square thatdet(ΦT

s Φs) 6= 0.
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FIGURE 3.2: Mapping from reference squarêΓ onto ∂Ω̂s

and vise versa.

Employing the mapφs(ξ̂) we can write for the basis functions defined in the ref-
erence element̂Ω, Eq.(3.27):

bk(φ
s(ξ̂)) =

M(p,d−1)
∑

m=0

T s
kmb̂m(ξ̂), (3.45)

where the set{b̂m(ξ̂)} = {1, ξ̂, η̂, . . . , η̂p} forms a basis for polynomials with degree
less or equal top on Γ̂ ⊂ R

2. The matricesT s are (M̂ ×M )-matrices, where

M̂(p, d) ≡M(p, d− 1), (3.46)

and whereM(p, d) has been defined in Eq.(3.8). With this relation, Eq.(3.45), and
the earlier obtained relation between the basis functionsbjk andbk, Eq.(3.29), the
first integral on the right-hand-side of Eq.(3.40) can be rewritten into an integral over
basis functionŝbk on Γ̂ (with Einstein summation convention, except for indexj):

∫

∂Ωjl

bjkbjmdΓ =

∫

∂Ω̂l

bkbm|Jj |dξ =

∫

Γ̂

T s
kk′ b̂k′T s

mm′ b̂m′ |Jj ||Ĵs|dΓ̂, (3.47)

where|Ĵs| = 1, because the surface area of the square surfacesΓ̂ and∂Ω̂s are equal.
So, we have:

∫

∂Ωjl

bjkbjmdΓ = |Jj |T s
kk′T s

mm′

∫

Γ̂

b̂k′ b̂m′dΓ̂, (3.48)

The integral in Eq.(3.48) has to be evaluated only once, as a pre-processing step in a
numerical simulation. For the first term on the right-hand-side of Eq.(3.40) we can
now write:
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1

2

[

A
n

+ αI
]

ujk

∫

∂Ωjl

bjkbjmdΓ = |Jj |
{

1

2

[

A
n

+ αI
]

T s
kk′T s

mm′

∫

Γ̂

b̂k′ b̂m′dΓ̂

}

ujk,

(3.49)
which, upon introducing the notation:

Gjkm ≡ 1

2

[

A
n

+ αI
]

T s
kk′T s

mm′

∫

Γ̂

b̂k′ b̂m′dΓ̂, (3.50)

can be written as:

1

2

[

A
n

+ αI
]

ujk

∫

∂Ωjl

bjkbjmdΓ = |Jj |Gjkmujk. (3.51)

The evaluation of the second integral on the right-hand-side of Eq.(3.40)involves
integrating basis functions from both elementsΩj andΩl. Although both can be
mapped ontôΓ, the integration can not readily be performed because a common
point on∂Ωǫ is mapped onto different points in̂Γ when mapping this point from,
respectively, elementΩj andΩl onto Γ̂. Assuming that a point on the surfacex ∈
∂Ωǫ is part of elementΩj , it is mapped onto the point̂ξ1 on the reference squarêΓ.
However, assuming thatx ∈ ∂Ωǫ is part of elementΩl it is mapped ontôξ2 on Γ̂:

ξ̂1 = ψs ◦ ξj(x) = ψs(ξj(x)), (3.52)

ξ̂2 = ψt ◦ ξl(x) = ψt(ξl(x)), (3.53)

where

s = s(j, l) and t = s(l, j), (3.54)

and wheres(j, l) is as in Eq.(3.43). In generalξ̂2 6= ξ̂1. The above situation has been
depicted in Fig. (3.3).

From Eqs.(3.52) and (3.53) and the maps Eq.(3.41) and (3.44)ξ̂2 can be expressed
in terms ofξ̂1.

ξ̂2 = ψt ◦ ξl ◦ x
j ◦ φs(ξ̂1) = ψt(ξl(xj(φs(ξ̂1)))), (3.55)

= N̂(θ, µ)ξ̂1, (3.56)

where the matrixN̂ is given by:
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FIGURE 3.3: Compound mapsψs ◦ ξj andψt ◦ ξl, mappingx onto ξ̂1 and ξ̂2,
respectively.

N̂(θ, µ) =

[

µ cos(θ) −µ sin(θ)
sin(θ) cos(θ)

]

, (3.57)

with θ = 0, ±π
2 or π andµ = ±1. The relation presented in Eq.(3.55) describes the

path; First̂ξ1 is mapped onto a point on∂Ω̂s in the reference element̂Ω via the map
φs, next this point on∂Ω̂s is mapped ontox in ∂Ωǫ via the mapxj . Now we have
expressedx in terms ofξ̂1. Subsequentlyx(ξ̂1) is mapped viaξl andψt to ξ̂2 in Γ̂.

The basis functions evaluated forx can now be expressed in terms of the basis
functionsb̂k:

blk(x) = bk(ξ
l(x)) = T t

kk′ b̂k′(ψt(ξl(x))) =

= T t
kk′ b̂k′(ψt(ξl(xj(φs(ξ̂))))),

= T t
kk′ b̂k′(N̂ ξ̂) (3.58)

bjm(x) = bm(ξj(x)) = T s
mm′ b̂m′(ψs(ξj(x))),

= T s
mm′ b̂m′(ξ̂). (3.59)

For the second integral on the right-hand-side of Eq.(3.40) we now obtain:

∫

∂Ωjl

blk(x)bjm(x)dΓ = |Jj |T t
kk′T s

mm′

∫

Γ̂

b̂k′(N̂ ξ̂) b̂m′(ξ̂)dΓ̂. (3.60)

Employing Eq.(3.57), the basis functionsb̂k(N̂ ξ̂) can be written as:

b̂k(N̂ ξ̂) ≡ Nkmb̂m(ξ̂), (3.61)
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and we can write for Eq.(3.60):

∫

∂Ωjl

blk(x)bjm(x)dΓ = |Jj |T t
kk′T s

mm′Nk′n′

∫

Γ̂

b̂n′ b̂m′dΓ̂. (3.62)

Hence, we have obtained for the second part of the right-hand-side ofequation Eq.(3.40):

1

2

[

A
n − αI

]

ulk

∫

∂Ωjl

blkbjmdΓ = |Jj |
{

1

2

[

A
n − αI

]

T t
kk′T s

mm′

Nk′n′

∫

Γ̂

b̂n′ b̂m′dΓ̂

}

ulk, (3.63)

which, upon introducing the notation:

H l
jkm ≡ 1

2

[

A
n − αI

]

T t
kk′T s

mm′Nk′n′

∫

Γ̂

b̂n′ b̂m′dΓ̂, (3.64)

can be written as:

1

2

[

A
n − αI

]

ulk

∫

∂Ωjl

blkbjmdΓ = |Jj |H l
jkmulk. (3.65)

In summary, we have obtain for the third term given by Eq.(3.38), employing Eq.(3.40)
and the results of Eq.(3.51) and Eq.(3.65):

∫

∂Ωj

h(uj ,ul,nj)bjmdΓ = |Jj |Gjkmujk +
∑

l∈Ij

|Jj |H l
jkmulk. (3.66)

• Fourth integral :

The fourth term of Eq.(3.17) is given by:

(sh, bjm)Ωj
= (bjk, bjm)Ωj

sjk. (3.67)
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Clearly the integral which has to be evaluated here is exactly the same as the one
which had to be evaluated for the first term. Employing Eq. (3.24) and Eq. (3.33) we
therefore simply obtain:

(sh, bjm)Ωj
= |Jj |Mkmsjk. (3.68)

3.2.4 Resulting system of equations

In the preceding section, section 3.2.3 we performed all the required integrations
of Eq.(3.17). Combining the results of Eqs.(3.32), (3.36), (3.66) and (3.68) we obtain
for Eq.(3.17)∀Ωj ∈ Ω, ∀m ∈ [0,M(p, d)]:

|Jj |Mkm
dujk

dt
+ |Jj | {−Fjkm +Gjkm}ujk +

∑

l∈Ij

|Jj |H l
jkmulk = |Jj |Mkmsjk,

(3.69)

Hence, the determinant|Jj | can be divided out of the equation, to result in:

Mkm
dujk

dt
+ {−Fjkm +Gjkm}ujk +

∑

l∈Ij

H l
jkmulk = Mkmsjk. (3.70)

For the sake of completeness, the matricesMkm, Gkm, Flkm andHlkm are given by
(Eqs.(3.33), (3.50), (3.37) and (3.64), respectively):

Mkm ≡
∫

Ω̂

bkbmdΩ̂,

Fjkm ≡ Ai(J
−T
j )il

∫

Ω̂

bk
∂bm
∂ξl

dΩ̂,

Gjkm ≡ 1

2

[

A
n

+ αI
]

T s
kk′T s

mm′

∫

Γ̂

b̂k′ b̂m′dΓ̂,

H l
jkm ≡ 1

2

[

A
n − αI

]

T t
kk′T s

mm′Nk′n′

∫

Γ̂

b̂n′ b̂m′dΓ̂,

where (Eq.(3.43)):

s = s(j, l), x
j(φs(Γ̂))) = ∂Ωjl.
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3.2.5 Evaluation of integrals involving non-linear terms

In section (3.2.3) we have evaluated the integrals where the determinant of the
transformation Jacobian (J) is assumed to be constant and the mean flow is approx-
imated as piecewise constant per element. In general the transformation jacobian,
J, and the mean flow can be in linear or non-linear form. Thus these terms canbe
expanded in terms of the basis functions leading to a general way of evaluating the
integral terms. In order to demonstrate this we will re-evaluate the first and second
integral terms using the mentioned expansion.

• First integral :

The first integral of Eq.(3.17) is given by:

∫

Ωj

∂ujk

∂t
bjkbjmdΩ =

dujk

dt

∫

Ωj

bjkbjmdΩ. (3.71)

Employing the inverse of the non-linear mapxj , denoted byξj and defined by
Eq.(3.26), and the basis functionsbjk(x), we evaluate the remaining integral as:

∫

Ωj

bjk(x)bjm(x)dΩ =

∫

Ω̂

bk(ξ)bm(ξ)|Jj |dΩ̂. (3.72)

Since the map is non-linear the determinant of the transformation jacobian is nota
constant. The term|Jj | can be expanded in terms of the basis functions. In general,
as:

|Jj | = j000j + j100j ξ + j010j η + j001j ζ + j110j ξη + ..., (3.73)

where, the number of terms is determined by the desired order of accuracyof the
expansion. Inserting this expansion into the volume integral gives:

∫

Ω̂

bmbk|Jj |dΩ̂ =

∫

Ω̂

bmbk
{

j000j + j100j ξ + j010j η + j001j ζ + j110j ξη + ...
}

dΩ̂,

= j000j M000
mk + j100j M100

mk + j010j M010
mk + j001j M001

mk + ..., (3.74)

where,

M i1,i2,i3
mk =

∫

Ω̂

ξi1ηi2ζi3bm(~ξ)bk(~ξ)dζdηdξ. (3.75)
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is so-called Mass matrix. Inserting Eq. (3.74) into Eq. (3.71) will result in

∫

Ωj

∂ujk

∂t
bjkbjmdΩ =

dujk

dt

{

j000j M000
mk + j100j M100

mk + j010j M010
mk + j001j M001

mk + ...
}

.

(3.76)

• Second integral:

The second integral of Eq.(3.17) is given by:

∫

Ωj

fi(uh)
∂bjm
∂xi

dΩ =

∫

Ωj

Aiujkbjk
∂bjm
∂xi

dΩ. (3.77)

Employing the relation∂
∂xi

= ∂ξl

∂xi

∂
∂ξl

and(Jj)il =
∂xj

i

∂ξl
, we get

∫

Ωj

Aiujkbjk
∂bjm
∂xi

dΩ =

∫

Ω̂

Aiujkbk(J
−T
j )il|Jj |

∂bm
∂ξl

dΩ̂. (3.78)

Following the discussion above, the termAi can be expanded in terms of basis func-
tions as:

Ai = A000
i +A100

i ξ +A010
i η +A001

i ζ +A110
i ξη..., (3.79)

and the inverse transpose of the transformation Jacobian,(J−T
j )il, as:

(J−T
j )il = (J000

j )−T
il + (J100

j )−T
il ξ + (J010

j )−T
il η + (J001

j )−T
il ζ + (J110

j )−T
il ξη + ...,

(3.80)
Inserting above expansions into Eq. (3.78) we get:

∫

Ω̂

Aiujkbk(J
−T
j )il|Jj |

∂bm
∂ξl

dΩ̂ =

∫

Ω̂

ujkbk
∂bm
∂ξl

{[

A000
i +A100

i ξ +A010
i η +A001

i ζ...
]

[

(J000
j )−T

il + (J100
j )−T

il ξ + (J010
j )−T

il η + (J001
j )−T

il ζ...
]

[

j000j + j100j ξ + j010j η + j001j ζ...
]}

dΩ̂, (3.81)

which can be rearranged to get
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∫

Ω̂

Aiujkbk(J
−T
j )il|Jj |

∂bm
∂ξl

dΩ̂ =
[

A000
i (J000

j )−T
il j000j

]

F 000
jkm +

[

A100
i (J000

j )−T
il j000j +

A000
i (J100

j )−T
il j000j +A000

i (J000
j )−T

il j100j

]

F 100
jkm + ..., (3.82)

with,

F i1,i2,i3
jkm =

∫

Ω̂

ξi1ηi2ζi3 bk
∂bm
∂ξl

dζdηdξ. (3.83)

3.3 Boundary conditions

An important feature of theDG method is that the approximate Riemann flux is
the only mechanism through which an element communicates with its environment
(direct neighbor or domain boundary), regardless of whether the bounding surface
of the element is in the interior of the domain or coincides with the domain bound-
ary (Atkins [9]). This makes that the system presented in Eq.(3.70) is also applica-
ble in elements adjacent to the domain boundary. In contrast, most higher-order
finite-difference and finite-volume methods require a modification of the discretiza-
tion stencils at points near the domain boundary. With increasing order, the mod-
ifications are needed for an increasing number of points, counted from the domain
boundary inwards. The modification requires special attention because itmight ad-
versely affect the accuracy and might even give rise to instabilities. Employing the
DG method complications such as these are avoided.

The boundary conditions can be imposed by either providing the desired solution
ul at the exterior side of the boundary, to be used in the approximate Riemann flux in
Eq.(3.17):

∫

∂Ωjl

h(uj ,ul,nj)bjmdΓ, (3.84)

or by reformulating the boundary normal flux, subjected to the specified boundary
condition, such that only part of the interior data are needed (Atkins [9]). Since we
usually do not have an exact solution at the exterior, we will specify the boundary
condition by reformulating the boundary normal flux. In section 3.2.1 the integral
involving the approximate Riemann flux, given by Eq.(3.84), replaced the surface
integral term of Eq.(3.17) and was introduced to provide coupling. In this section we



34 CHAPTER 3. DISCONTINUOUSGALERKIN FORMULATION

will apply the different boundary conditions to boundary∂Ωjb ∩ ∂Ω, where∂Ωjb ∈
∂Ω, ∂Ωjb ∈ ∂Ω, and reformulate the surface integral term of Eq.(3.17):

∫

∂Ωjb

fi(uj)njibjmdΓ, (3.85)

where

fi(uj)nji = njiAiuj = An
uj , An ≡ njiAi, (3.86)

and where:

uj(x, t) = ujk(t)bjk(x), x ∈ ∂Ωj .

Hence, we have:
∫

∂Ωjb

fi(uj)njibjmdΓ = An
ujk

∫

∂Ωjb

bjkbjmdΓ. (3.87)

In analogy with section 3.2.3, the integration will be performed employing the
reference squarêΓ. The notation which will be used here has been introduced in
section 3.2.3. Employing the result of Eq.(3.48), we recast Eq.(3.87) into anintegral
over the reference square:

∫

∂Ωjb

nifi(uj)bjmdΓ = An
i ujk|Jj |T s

kk′T s
mm′

∫

Γ̂b

b̂k′ b̂m′dΓ̂, (3.88)

wheres is such thatxj(φs(Γ̂))) = ∂Ωjb. Upon introducing the notation, which is
closely related to the notation introduced in Eq.(3.50):

Gb
jkm ≡ AnT s

kk′T s
mm′

∫

Γ̂

b̂k′ b̂m′dΓ̂, (3.89)

we obtain
∫

∂Ωjb

fi(uj)njibjmdΓ = Gb
jkmujk. (3.90)

The unit normal vectorn to the boundary∂Ωjb, which we will use frequently
in this section, is derived from the unit normal vector to the boundary∂Ω̂s in the
reference elementτ s, employing the relation:

n =
J−T

j τ s

‖J−T
j τ s‖

. (3.91)
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It is noted thatn andτ s are constants on∂Ωjb and∂Ω̂s, respectively.
In the subsequent (sub-)sections the characteristics-based non-reflecting boundary

condition for∂Ωjb ∈ ∂ΩNR, solid wall boundary condition for∂Ωjb ∈ ∂ΩSW and
vibrating wall boundary condition for∂Ωjb ∈ ∂ΩV W , will be presented.

3.3.1 Characteristics-based non-reflecting boundary condition

We apply non-reflecting boundary conditions when we want to ensure that waves
that are leaving the domain can do so, as if the boundary does not exist. The simplest
form of non-reflecting inflow and outflow boundary conditions is obtainedby split-
ting the boundary normal flux into characteristic components according to whether
their associated wave is entering or leaving the domain. The Euler and the linearized
Euler equations are hyperbolic and can therefore be transformed into a characteristic
form which facilitates the boundary condition treatment.

The (5 × 5)- matrix An
0 , defined in Eq.(3.39), has5 eigenvaluesλ1, . . . , λ5, the

corresponding eigenvectorsr1, . . . , r5 can be shown to be linearly independent. Now
we can write (R̊ade & Westergren [89]):

An = RΛR−1, (3.92)

where

Λ = diag(λ1, . . . , λ5), R = [r1, . . . , r5]. (3.93)

We define:

Λ+ = diag(max(0, λ1), . . . ,max(0, λ5)), (3.94)

Λ− = diag(min(0, λ1), . . . ,min(0, λ5)), (3.95)

and note that:

Λ+ + Λ− = Λ, (3.96)

such that:

An
uj = (RΛ+R−1)uj + (RΛ−R−1)w, (3.97)

wherew can be used to describe an incoming wave. Usually we setw = 0.
Settingw = 0, we replaceAn

0 in Eq.(3.89) byRΛ+R−1. Upon introducing the
notation:

GNR
jkm ≡ (RΛ+R−1)T s

kk′T s
mm′

∫

Γ̂

b̂k′ b̂m′dΓ̂, (3.98)
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we obtain for the characteristics-based non-reflecting boundary condition:

∫

∂Ωjb

fi(uj)njibjmdΓ = GNR
jkmujk, ∂Ωjb ∈ ∂ΩNR ⊂ ∂Ω. (3.99)

3.3.2 Solid-wall boundary condition

The solid-wall condition states that no flow passes through the boundary.Assum-
ing that the mean flow satisfies this condition, we have to set the normal velocity
perturbation equal to zero in order to implement this condition .

In vector notation, a vectorV can be modified to have zero normal component,
relative to the normaln, by replacing it by the vectorW:

W = V −
(

V · n
)

n, so that W · n = 0. (3.100)

The three components of the velocity perturbation are given by the second, third
and fourth component ofuj . Hence, to implement the solid-wall boundary condition
for the velocity perturbation, we have to impose:

um+1
j nm = 0, m = 1, 2, 3, (3.101)

whereum
j denotes themth-component of the solution vectoruj . Because the bound-

ary normal vector is constant over the surface∂Ωjb, the solid-wall boundary condi-
tion can be applied to Eq.(3.90) by replacinguj by ũj , where the second, third and
fourth component are given by (in analogy with Eq.(3.100)):

ũm+1
jk = um+1

jk −
(

ul+1
jk nl

)

nm, m, l = 1, 2, 3, ∀ k. (3.102)

The first and fifth component ofuj remain unchanged. For the solid-wall boundary
condition we finally obtain:

∫

∂Ωjb

fi(uj)nijbjmdΓ = Gb
jkmũjk, ∂Ωjb ∈ ∂ΩSW ⊂ ∂Ω. (3.103)

3.3.3 Vibrating-wall boundary condition

When considering a vibrating wall it is assumed that the surface-vibration ampli-
tude is small compared to a representative acoustic wavelength and representative
dimensions describing the surface. Assuming that the vibrating wall condition, i.e.
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the wall displacement, is introduced to the linearized Euler equations by a normal ve-
locity boundary conditionuwall, the boundary condition can be imposed by simply
modifying Eq. (3.102):

ũm+1
jk = um+1

jk −
(

ul+1
jk nl + (uwall)jk

)

nm, m, l = 1, 2, 3, ∀ k, (3.104)

where(uwall)jk can be obtained by projectinguwall onto the basis set
{

b̂k
}

. The
coefficients can then be obtained from solving:

∫

Γ̂

uwallb̂mdΓ̂ = (uwall)jk

∫

Γ̂

b̂k b̂mdΓ̂. (3.105)

Althoughuwall is known function ofξ̂ andη̂ in the entire surface, evaluation of the
integrals, presented at the left-hand-side of Eq. (3.105) might still be cumbersome.
As an alternative, the integrals can be evaluated employing numerical quadrature or
the projection coefficients can be obtained by expandinguwall in terms of the local
basis functionŝbk.

3.4 Initial conditions

We can expand the initial conditions in terms of the basis functions. Suppose we
have the initial condition

u(x, 0) = u0(x), u0(x) ∈ R
5. (3.106)

We would like to approximate this initial condition with a projection on to the basis
functions as:

uh =
∑

j

ujk(t)bjk(x), (3.107)

We also require that the error between the exact functionu0 and the approximation
uh to be minimum. Hence;

ψ =

∫

Ω

‖uh − u0‖2dΩ, (3.108)

is minimized. We can write this norm as

ψ =

∫

Ω

‖uh − uo‖2dΩ =

∫

Ω

(uh − u0,uh − u0dΩ). (3.109)
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To minimize the above norm, the derivatives ofψ with respect to allum
jk must be

equal to zero:

∂ψ

∂um
jk

= 0, ∀j, k,m, (3.110)

note that there is no summation over indexj:

∂ψ

∂um
jk

= 2

∫

Ω

bjk(u
m
h − um

0 )dΩ,

= 2um
jl

∫

Ω

bjkbjldΩ − 2

∫

Ω

bjku
m
0 = 0,

⇒ (bjk, bjl)u
m
jl = (bjk, u

m
0 ), ∀j,m, k. (3.111)

For fixed values ofj ∈ {1, 2, ..., N}, m ∈ {1, 2, ..., 5} this is a(p+ 1) × (p+ 1)
linear system forum

j0, u
m
j1, ..., u

m
jp.

3.5 Runge-Kutta time integration

The time integration is performed applying the low-storage Runga-Kutta ([61])
algorithm. The system, presented in Eq.(3.70), for each elementΩj is written as:

duj

dt
= Kuj . (3.112)

The matrixK is comprised of the contributions of elementΩj and its (at most) six
direct neighbors,Ωl, l ∈ Ij . The solution at timet+∆t is obtained from the solution
at timet, ∀Ωj , employing the following algorithm for theN -stage Runga-Kutta time
integration:

u
n,0
j = u

n
j ,

u
n,k
j = u

n
j + γk∆tKu

n,k−1
j , k = 1, ..., N,

u
n+1
j = u

n,N
j . (3.113)

The coefficientsγk can be chosen such to obtain the required accuracy in time. For
the four step scheme we useγ1 = 1

4 , γ2 = 1
3 , γ3 = 1

2 andγ4 = 1.
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4.1 Introduction

The verification is always the first goal in developing a numerical algorithm.A veri-
fication procedure is achieved by applying the numerical method to a problemwhich
the analytical solution is known or can be derived and verifying that the solution
obtained by the numerical method is close to the analytical solution within ”accept-
able” limits. Verification procedure also makes it possible to get an idea aboutan
actual accuracy of the numerical method developed both in space and time. Further-
more, post-processing is almost a ”must” to get more insight of the method devel-
oped. Considering all these processes it is advantageous to chose a ”simple” problem
where the analytical solution can be derived and all these time consumingnumerical
experimentscan be simulated in a shorter time. To this end, convection of a one-
dimensional Gaussian pulse is chosen as a verification problem. Although theprob-
lem is one-dimensional the numerical solution is obtained by a three-dimensional
method.

The discontinuous Galerkin space discretization is tested up to fourth-order of ac-
curacy. The time integration is performed by the four-stage low-storage Runge-Kutta
algorithm which is shown to be fourth-order accurate.

In the next section the problem is described. The analytical solution of the problem
is presented in two alternative routes in section 4.3. The numerical results including
the numerical dispersion and the CPU-time requirements are presented in section 4.4.

4.2 Problem Description

As a test case Eqs. (2.37) are solved on a rectangular domain in which a compact
acoustic perturbation is imposed through the initial condition on the hexahedral grid.
The solution domain has dimensionsx ∈ [−5, 5], while in they− z plane it contains
only one element, which is sufficient in order to represent the solution of thepresent
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1D problem. However, note that the unknown coefficientsujk associated with the
basis functions that have a variation with respect to they andz-directions are not set
to zero, but are computed as part of the solution. The initial acoustic perturbation
is centered atx = 0, y = 0, z = 0. The simulations have been carried out with a
quiescent background without sources (s = 0) and the initial condition for the 3D
solution vector is given by:

u(x, 0) =
(

ρ′, u′, v′, w′, p′
)T

= (f(x), 0, 0, 0, f(x))T , (4.1)

with,

f(x) = e−βx2

, β = − log(10−6)

2
. (4.2)

FIGURE 4.1: The solution domain.

In the remainder of this chapter we drop the primes, so the perturbed quantities are
stated asρ, u, v, w, andp.

4.3 Analytical Solution

In one-dimension the Linearized Euler Equations (Eq. (2.37)) can be written as
follows:

∂u

∂t
+A

∂u

∂x
= 0, (4.3)

where,

u =







ρ
u
p






, A =







M 1 0
0 M 1
0 1 M






. (4.4)

The matrixA has three linearly independent eigenvectors, corresponding to the eigen-
valuesM + 1,M andM − 1 of A, therefore matrixA can be diagonalized as;

A = RΛR−1, R =







1 1 1
1 0 −1
1 0 1






. (4.5)
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with, Λ = diag(M + 1,M,M − 1). We introduce a new unknown;

w =







w1

w2

w3






, (4.6)

by means of the following transformation

u = Rw ⇒ w = R−1
u, (4.7)

with

R−1 =







0 1
2

1
2

1 0 −1
0 −1

2
1
2






. (4.8)

Introducing this transformation into Eq. (4.3)gives

∂u

∂t
+A

∂u

∂x
= R

∂w

∂t
+AR

∂w

∂x
= 0, (4.9)

and multiplying each side of this equation byR−1 we get

R−1R
∂w

∂t
+R−1AR

∂w

∂x
= 0, (4.10)

or,
∂w

∂t
+ Λ

∂w

∂x
= 0. (4.11)

with,

w =







1
2(p+ u)
ρ− p

1
2(p− u)






. (4.12)

The components ofw are called Riemann invariants. The analysis show that the first
and third component ofw corresponds to acoustic waves and the second component
to the entropy wave. For the present initial solution the latter one is absent. The
general solution of the above equation can be written as

w(x, t) = f(x− Λt). (4.13)

Now, consider the problem introduced in section 4.2 in one-dimension with the initial
condition:

u0 =







f(x)
0

f(x)






, (4.14)
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with f(x) defined in Eq. (4.2). Applying the transformation introduced in Eq.(4.10)
leads to:

w0 = R−1
u0 =







0 1
2

1
2

1 0 −1
0 −1

2
1
2













f(x)
0

f(x)






=







1
2f(x)

0
1
2f(x)






. (4.15)

Using the definition off(x) (Eq. (4.2)) we can write the general solution of the
problem as:

w(x, t) =







1
2e

−β(x−Λ1t)2

0
1
2e

−β(x+Λ3t)2






. (4.16)

Using the transformation introduced in Eq. (4.10) one more time we can write the
general solution,u(x, t), to the Eq. (4.3) forM = 0, (Λ = diag(1, 0,−1)) as follows

u = Rw ⇒ u(x, t) =







1 1 1
1 0 −1
1 0 1













1
2e

−β(x−t)2

0
1
2e

−β(x+t)2






,

=







1
2(e−β(x−t)2 + e−β(x+t)2)
1
2(e−β(x−t)2 − e−β(x+t)2)
1
2(e−β(x−t)2 + e−β(x+t)2)






. (4.17)

The analytical solution of the problem considered is shown in figure (4.2) at various
time instants. It shows that the initial Gaussian pulse splits up in two (condensation)
waves, one moving to the left at speeddx

dt = (M − 1) and one moving to the right at
speeddx

dt = (M + 1) with amplitude equal to half the amplitude of the initial pulse.
The induced velocity perturbations in both condensation waves is in the propaga-

tion direction of the wave, as known from classical 1D acoustics (see figure 4.3).
We can also derive an alternative route to the analytical solution. Rewrite the

Linearized Euler Equations:

∂ρ

∂t
+M

∂ρ

∂x
+
∂u

∂x
= 0,

∂u

∂t
+M

∂u

∂x
+
∂p

∂x
= 0,

∂p

∂t
+M

∂p

∂x
+
∂u

∂x
= 0. (4.18)

We can differentiate Eqs. (4.18) to get

(

∂

∂t
+M

∂

∂x

)2

p(x, t) − ∂2p

∂x2
= 0,
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FIGURE 4.2: Distribution of pressure perturbation at various dimensionless times (tc0/H,
withH the height of the duct). Analytical solution.

(

∂

∂t
+M

∂

∂x

)2

u(x, t) − ∂2u

∂x2
= 0,

(

∂

∂t
+M

∂

∂x

)2

(p(x, t) − ρ(x, t)) = 0. (4.19)

Therefore d’Alembert’s solution can be written as follows:

p(x, t) = f̂(x− (M + 1)t) + ĝ(x− (M − 1)t),

u(x, t) = f̂(x− (M + 1)t) − ĝ(x− (M − 1)t),

p(x, t) − ρ(x, t) = ĥ(x−Mt). (4.20)

The solution can be interpreted as in figure (4.4) Along the linet = 0 the initial
condition is given in Eq. (4.1). From this it follows that along the initial linet = 0,
p− ρ = 0. This implies thatp(x, t) − ρ(x, t) = 0. Furthermore along the initial line
t = 0 p+ u = f(x), so thatp(x, t) + u(x, t) = f(x− (M + 1)t). Finally along the
initial line t = 0 p− u = f(x) leading top(x, t)− u(x, t) = f(x− (M − 1)t). This
is summarized in figure (4.5). From Eq. (4.22) the general solution can be written as:

p(x, t) =
1

2
f(x− (M + 1)t) +

1

2
f(x− (M − 1)t) = ρ(x, t),

u(x, t) =
1

2
f(x− (M + 1)t) − 1

2
f(x− (M − 1)t). (4.23)

Finally, using the initial condition introduces in Eq. (4.2) we can write the solution
as follows:

ρ(x, t) = p(x, t) =
1

2

(

e−β(x−(M+1)t)2 + e−β(x−(M−1)t)2
)

,
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FIGURE 4.3: Distribution of velocity perturbation at various dimensionless times (tc0/H,
withH the height of the duct). Analytical solution.
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FIGURE 4.4: Characteristic lines.

dx

dt
= M : p− ρ = constant,

dx

dt
= (M + 1) : p+ u = constant,

dx

dt
= (M − 1) : p− u = constant.

(4.21)

(x,t)

ρ=0

��
��
��
��

t

x

p+u=f(x−(M+1)t)

p−u=f(x−(M−1)t)

p −

FIGURE 4.5: Construction of solution of
(x,t).

p(x, t) + u(x, t) = f(x− (M + 1)t),

p(x, t) − u(x, t) = f(x− (M − 1)t),

p(x, t) − ρ(x, t) = 0.

(4.22)

u(x, t) =
1

2

(

e−β(x−(M+1)t)2 − e−β(x−(M−1)t)2
)

. (4.24)
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ForM = 0 this solution is identical to the one presented in Eq. (4.17).

4.4 Numerical Results

The initial solutionu(x, 0), given by Eq. (4.1), has been approximated by a Taylor-
series expansion in each element which has the same spatial order of accuracy as the
numerical method itself. Alternatively the initial condition can be projected onto the
basis functions as described in Section 3.4.

The 1D simulations have been performed with the present 3D method.At the bound-
aries inx-direction (x = ±5) the characteristic based non-reflecting boundary con-
ditions (see Section 3.3.1) are employed. Furthermore symmetry-plane boundary
conditions are used iny- andz-directions. For the linear equation which we are con-
sidering, the symmetry-plane boundary condition is identical to solid-wall boundary
condition, described in Section 3.3.2. The numerical solution is presented along the
line in x−direction passing through the centroid of the elements.

The simulations have been carried out on different hexahedral meshes. The physi-
cal domain,Ω, is partitioned into 100, 200 and 400 equally sized cubes inx−direction,
while one cube is used iny- andz-directions (figure (4.1)).

During the computations the results (function value (p ≥ 0) and its first derivatives
(p ≥ 1), second derivatives (p ≥ 2), etc.) are obtained at the cell centers and subse-
quently as a post-processing the values at all corner points of the mesh are evaluated
using the basis functions. When a node point is common to more than one element
the node value is obtained by averaging the corner point values .

4.4.1 Verification

Figures (4.6) and (4.7) shows a comparison of results for the first, second, third and
fourth order accurate numerical method with the corresponding analyticalsolution
for dimensionless timest = 1 andt = 2. The simulations have been performed on
a relatively coarse mesh (number of element inx− direction, N=50) to demonstrate
the accuracy of the method. The results show that for the first-order method (p = 0)
the pressure perturbation dissipates quickly, while the higher-order methods (p ≥ 1)
give much better results. A similar comparison for the velocity perturbation is shown
in figures (4.8) and (4.9).

In figure (4.10) the reconstruction of the discontinuous solution is shown for var-
ious orders of accuracy. Here, the solution is evaluated at a large number (100) of
points within each element, as a post processing, using the base functions.When
only an element-wise constant basis function is used (p = 0) the solution can only
be approximated element-wise constant. Increasing the polynomial degree tolinear
(p = 1) already gives better approximation as can be seen from figure (4.10) qualita-
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FIGURE 4.6: Distribution of pressure perturbation at dimensionless time t=1 for∆x = 0.2,
for the analytical and numerical solutions. The symbols indicate the numerical solutions, the
solid line is the analytical result.
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FIGURE 4.7: Distribution of pressure perturbation at dimensionless time t=2 for∆x = 0.2,
for the analytical and numerical solutions. The symbols indicate the numerical solutions, the
solid line is the analytical result.
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FIGURE 4.8: Distribution of velocity perturbation at dimensionless time t=1 for∆x = 0.2,
for the analytical and numerical solutions. The symbols indicate the numerical solutions, the
solid line is the analytical result.
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FIGURE 4.9: Distribution of velocity perturbation at dimensionless time t=2 for∆x = 0.2,
for the analytical and numerical solutions. The symbols indicate the numerical solutions, the
solid line is the analytical result.
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FIGURE 4.10: Reconstruction of the discontinuous solution at dimensionless time t=1 and
∆x = 0.2, for various values ofp. The solid lines indicate the numerical solutions, the
dashed line is the analytical result.

tively. The fourth-order method (p = 3) gives the best results.

For the fourth-order method the difference between the analytical solutionand the
numerical solution is plotted in the left-hand side of figure (4.11). The right-hand
side of figure (4.11) is a close-up of part of the plot illustrating the discontinuous
numerical solution at the element interfaces. The sharp peaks in this plot correspond
to the intersection points of the numerical solution evaluated at many points on the
element and the analytic solution. At mostp + 1 intersections are expected wherep
is the degree of the base functions.

The simulations performed forp-refinement study on the100 × 1 × 1 mesh is
plotted in figure (4.12) where the comparison with the reconstructed result and the
analytical solution is also shown. The reconstructed result is obtained using the nu-
merical solution obtained by the fourth-order (p=3) method on the same mesh.A
closer look (see figure (4.13)) shows that the reconstructed solution is inagreement
with the analytical solution.
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FIGURE 4.11:Difference between the exact solution and numerical solution for the pressure
perturbation at dimensionless time t=1,∆x = 0.2 (left). A detail of figure (5) showing the
DG solution with the discontinuities at the element boundaries (right).
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FIGURE 4.13: A detailed view of comparison of the distribution of pressure perturbations
at dimensionless timet = 1 for ∆x = 0.1 for p-refinement.

4.4.2 Accuracy

We obtained the time-converged solution by performing a time-refinement study.
We can approximate the semi-discrete solution by employing Richardson extrapola-
tion [89] as follows:

∣

∣p′∆t(x, t) − p′∆t=0(x, t)
∣

∣ = c∆tα, (4.25)

where,p′∆t is the fully-discrete solution,p′∆t=0 is the semi-discrete solution,c is a
constant,∆t is the dimensionless time step andα is the order of accuracy of the time
discretization. Performing simulations for different values of the dimensionless time
step,∆t, we can construct the semi-discrete solutionp′∆t=0 for any point with the way
explained above. Figure (4.14) shows the order of accuracy of the time discretization
obtained by employing equation (4.25) at each grid point. The dimensionless timeis
t = 1 and the domain is divided into 100 elements. Here, the result is shown only for
the fourth-order (p = 3) accurate method, but a similar result is obtained for the first,
second and third order methods. Recalling that a four-stage low-storageRunge-Kutta
scheme is used for the time discretization, the time refinement study suggests that
indeed the method is fourth-order accurate in time for the linear problem considered.

Next, a grid convergence study is performed using the time-converged semi-discrete
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FIGURE 4.14: Order of accuracy of the time discretization, obtained by the fourth-order
method, at dimensionless time t=1 and for∆x = 0.1.

solution. In order to perform this study, the solution is evaluated on an interrogation
mesh with 10,000 common points used for the meshes with 100, 200 and 400 el-
ements inx−direction, i.e. with 100, 50 and 25 interrogation points per element,
respectively. TheL2-norm employed for each mesh, is of the form:

L2 =







1

L

L
∫

0

[

p′(x, t) − p′exact(x, t)
]2
dx







1/2

∼=







1

10000

10000
∑

j=1

[

p′(xj , t) − p′exact(xj , t)
]2







1/2

(4.26)

with xj the points of the interrogation mesh, which gives an accurate approximation
of the integral norm. Note that thep′(x, t)’s used are the semi-discrete solutions for
∆t = 0 on the mesh considered.

In figure (4.15) results obtained for three different meshes are compared with the
reconstructed result and analytical solution. The reconstructed resultis obtained us-
ing the numerical result obtained by the fourth-order (p=3) method on the 100x1x1
mesh. A detailed view is shown in figure (4.16).

The figure (4.17) shows theL2-norm of the error in the pressure perturbation as a
function of the number of elementsN , with ∆x = L/N , andL = 10. The results
show that the present method is converging at a rate ofhp+1 for p = 1, 2 and3 and
with a rate slightly higher thanhp+ 1

2 for p = 0, which agrees with the convergence
rates derived in the literature, e.g. Ref. [60]. It is remarkable that in the range of∆x
considered the line of the orderpmethod is situated above the one for the order-(p−1)
method for anyp considered.
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FIGURE 4.15: Comparison of the distribution of pressure perturbations at dimensionless
timet = 1 for ∆x = 0.1 for grid refinement.
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FIGURE 4.16: A detailed view of comparison of the distribution of pressure perturbations
at dimensionless timet = 1 for ∆x = 0.1 for grid refinement.
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It is also observed that in case fewer points are used to evaluate theL2-norm, e.g.
common grid points of the coarsest or finest mesh considered (where the number of
points used to evaluate theL2 norm is of the order of the number of grid points) the
rate of convergence forp = 1 is abouth3 (see figure (4.18)) which might suggest
that this specific norm is based on some special points in the solution, namely, points
close to the intersection points.
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FIGURE 4.17:L2-norm of error in pressure perturbation,Eq. (4.26), as function of N, with
∆x = L/N , andL = 10, at dimensionless time t=1.
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FIGURE 4.18: TheL2-norm of error in pressure perturbation as function of N, with ∆x =

L/N , with L = 10, at dimensionless time t=1 where fewer points are used to evaluate the
L2-norm.
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4.4.3 Numerical Dispersion

The present method produces weak waves of small amplitude introduced bythe
numerics. Originating from the slope-discontinuity at the fronts of the initial wave,
wave propagating at a higher speed thanc0 lead the acoustic wave.

Blom [25] has shown the numerical dispersion relation for the discontinuous Galerkin
method applied to a one-dimensional model problem forp = 0 up top = 5. Blom
also discussed that the slope of the numerical dispersion as function ofk∗∆x, with
the scaled wave number,k∗ = k

π(p+1) , represents the velocity at which the numer-
ically induced waves propagate. In figure (4.19) this slope is shown as calculated
from the numerical dispersion relation plot that is presented by Blom [25] (page 79,
figure 4.4) forp = 3. It is seen from figure (4.19) that the numerically induced waves
propagate at a speed betweenc0 and about2c0.
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FIGURE 4.19:Calculated slope of the numerical dispersion relation given by Blom[25] for
p = 3 for plane-wave perturbations.

The numerical dispersion can be demonstrated for a problem similar to the Gaussian
pulse problem considered in the preceding sections. Consider a domain that has di-
mensionsx ∈ [−5, 5] and extends in they− z plane by only one element. The initial
acoustic perturbation is symmetric with respect to the planex = 0 and the initial
condition for the 3D solution vector is given by:

u(x, 0) =
(

ρ′, u′, v′, w′, p′
)T

= (g(x), 0, 0, 0, g(x))T , (4.27)
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FIGURE 4.20:Distribution of plane-wave pressure perturbation at dimensionless timest =

0 (initial condition) andt = 1. Numerical solution forp = 3, ∆x = ∆y = ∆z = 0.05,
∆t = 1.0 · 10−3.

with,

g(x) = cos(
2πx

λ
), −0.5 ≤ x ≤ 0.5, (4.28)

g(x) = 0, x < −0.5, (4.29)

g(x) = 0, x > 0.5. (4.30)

with λ = 2, defining a half-sine wave with a slope discontinuity at the fronts initially
atx± 0.5. Figure (4.20) shows the initial wave and the numerical solution att = 1.
From the numerical results, as well as from figures (4.20) and (4.21), itis evident that
the amplitude of the numerically-induced waves is very small, smaller than10−6.

In figure (4.21) the contours of the pressure perturbation are plotted in the x − t
plane. In this figure the speed of the true wave can be calculated asc0 = 1.0. What
is also evident from this figure is that the weak numerically induced waves originate
from the slope-discontinuity at the fronts of the imposed wave. The speed of these
numerically induced waves can be determined from the figure as being in the range
c0 and a value slightly above2c0. This result is in agreement with the numerical
dispersion relation analysis shown by Blom [25] forp = 3.

4.4.4 CPU time requirements

The simulations have been performed on SGI Origin200 MIPS RISC R12000
processor with a clock speed of 270 MHz. The time required to advance thesolution
one time step is shown in table (4.1).

Although the CPU-time required per time step gives an idea about the simulation
times, since the errors between the analytical solution and the numerical methods
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FIGURE 4.21:Contours of plane-wave pressure perturbations in thex− t plane. Numerical
solution forp = 3, ∆x = ∆y = ∆z = 0.05, ∆t = 1.0 · 10−3.

number of elements order of accuracy (p+ 1) CPU time per time step (seconds)
100 2 0.0182
100 3 0.0247
100 4 0.0415
200 2 0.0356
400 2 0.0704

TABLE 4.1: The time required for the numerical simulations on the hexahedral mesh.

presented in Table (4.1) are different for each method it is not an exactcomparison.
To have a better idea of an optimum method in means of CPU-time it is more accurate
to compare the time needed to reach a certain error level. This can be achieved
by calculating the∆t required to obtain a certain error level (see figure (4.22)). In
general the total error in the numerical method can be written as:

||ε|| = c1h
α̂ + c2(∆t)

α. (4.31)

In figure (4.17) the error between the analytical solution and the numericalmethod is
shown for∆t→ 0, thus,

||ε∆=0|| = c1h
α̂. (4.32)

Furthermore, in the previous section it is also shown that the order of accuracy of the
time integration (α) is about 4. Hence, we can write for the total error:
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FIGURE 4.22:A sketch of the calculation of the required time step to obtain a certain
error level.

||ε|| = ||ε∆=0|| + c2(∆t)
4. (4.33)

The total error for the corresponding time step,∆t, can be calculated and then the
constant,c2, can be derived as:

c2 =
||ε|| − ||ε∆t=0||

(∆t)4
. (4.34)

Finally, the∆t required for the desired error level can be calculated as

∆trequired =

( ||εdesired|| − ||ε∆t=0||
c2

)

1

4

. (4.35)

In figure (4.23) the CPU-time needed to achieve a dimensionless timet = 1 is
presented. For each method the time step required to obtain a certain error level is
used as discussed. It can be concluded for the one-dimensional problem considered
that the numerical method which is third-order accurate (p = 2) in space applied on
the coarsest mesh considered is the optimum in means of CPU-time requirements.
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FIGURE 4.23: CPU-time requirements for the methods considered to achieve the
dimensionless timet = 1 under certain error level condition.
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ACOUSTICRADIATION FROM

V IBRATING WALL SEGMENT

5.1 Introduction

The problem of acoustic radiation from a vibrating wall segment inside an infinite
rectangular duct is considered. The problem has been addressed byBlom[25, 26],
who applied theDG method for a mesh of tetrahedral elements using second-order
(p = 1) spatial accuracy. Blom also derived the analytical solution of the problem.
In this chapter theDG method is applied for a mesh of hexahedral elements first
using second-order spatial accuracy in order to compare the results withthe method
applied on a tetrahedral mesh by Blom. Furthermore ap-refinement study has been
conducted using third- and fourth-order methods.

The vibrating wall problem is not an aeroacoustical problem, because theacoustic
source is not of aerodynamic nature. However, the numerical algorithm has been
developed to be applied for acoustic-wave propagation problems for given sources
of sound. Therefore the vibrating wall problem at hand is well-suited as verification
problem for the numerical algorithm.

The two main objectives of this chapter are to compare the results obtained for
a hexahedral mesh to the results obtained for a tetrahedral mesh and to compare the
numerical results obtained for a hexahedral mesh for values ofp up to 3 (fourth-order)
and the analytical solution in order to verify the numerical algorithm.

In section 5.2 the vibrating wall problem is described. A brief description ofthe
analytical solution of the problem that has been derived by Blom[25, 26] isgiven
in section 5.3. Numerical results are given in section 5.4 where a comparisonwith
results obtained for a tetrahedral mesh is also discussed. Furthermore a grid conver-
gence (h-refinement) and ap-refinement study is presented in section 5.4. In section
5.5 the numerical algorithm is applied by prescribing directly the wall displacement
instead of prescribing the normal velocity profile and reconstructing the wall vibra-
tions from that.
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5.2 Problem Description

Consider an infinite rectangular duct of heighth = 1 and widthb, see figure (5.1).
In the middle of the duct a finite part of the duct bottom wall, of length2l, is allowed
to vibrate. The origin of the Cartesian coordinate system is in the mid-section of
the duct at one of the lower corners. In the origin we define the orthogonal unit
coordinate vectorsex, ey andez. In this study we consider the sound field generated
by this vibrating wall segment inside the infinite duct. It is assumed that the problem
can be described by the (non-dimensionalized) linearized Euler equations.
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FIGURE 5.1: Infinite rectangular duct with vibrating wall segment.

The wall can be described by the position vectorxs (for t > 0) on the moving
surface (S = 2l × b):

xs(x, y, t) = xex + yey + εzs(x, y, t)ez, x ∈ [−l, l], y ∈ [0, b], (5.1)

with ε a measure for the amplitude of the wall vibration. The velocity vectorU is
given by:

U(x, y, z, t) = (M + u′)ex + v′ey + w′
ez, x ∈ [−l, l], y ∈ [0, b], (5.2)

whereM is the Mach number. Since the surface is assumed to be impenetrable,
flow may not pass through the wall. This can be imposed by means of the kinematic
condition dF

dt = 0, whereF (x, y, z, t) ≡ εzs(x, y, t) − z is the definition of the
moving surface:
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(

dF

dt

)

= 0 ⇒
[

∂F

∂t
+ ∇F · dxs

dt

]

s
= 0,

⇒
[

∂F

∂t
+ ∇F · U

]

s
= 0. (5.3)

With

∂F

∂t
= ε

∂zs
∂t

, ∇F = ε
∂zs
∂x

ex + ε
∂zs
∂y

ey − ez, (5.4)

we obtain:

[

ε
∂zs
∂t

+ ε(M + u′)
∂zs
∂x

+ εv′
∂zs
∂y

− w′

]

s

= 0, (5.5)

We assume that the amplitudeε of the surface displacement is small compared to the
acoustic wave length, the surface dimensions,l andb and the duct heighth. Based on
these assumptions it is consistent to linearize Eq.(5.5) with respect to the stationary
reference surfacez = 0 (Pierce [88]). This leads to:

w′(x, y, 0, t) = ε

(

∂zs
∂t

+M
∂zs
∂x

)

. (5.6)

The perturbation velocity induced by the wall motion is scaled, i.e.w = w′/ǫ. The
displacement of the surface results in a normal velocity boundary conditionfor the
linearized Euler equations to be imposed atz = 0:

un(x, y, t) = ψ(x, y, t)H(l − |x|), x ∈ (−∞,∞), y ∈ [0, b], (5.7)

whith

ψ(x, y, t) ≡ −w(x, y, 0, t) = −
(∂zs
∂t

+M
∂zs
∂x

)

, (5.8)

and whereH is the Heaviside function.
The non-dimensionalized convected wave equation can be derived for the pressure

as follows:

D2p

Dt2
−∇2p = 0,

D

Dt
=

∂

∂t
+M

∂

∂x
, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (5.9)

Taking the inner product of the momentum equation with the unit normaln0 = −ez,
results in the following linearized boundary condition for the pressure atz = 0:
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∂p

∂z
|z=0 =

∂un

∂t
+M

∂un

∂x
. (5.10)

On the other walls, which are rigid and impenetrable, we apply the hard-wall condi-
tions:

∂p

∂z
|z=h = 0,

∂p

∂y
|y=0 = 0,

∂p

∂y
|y=b = 0. (5.11)

In the following sections we will solve Eq.(5.9) with the boundary conditions given
by Eq.(5.10) and Eq.(5.11).

Plunging wall segment

Let us assume that the displacement of the vibrating wall segment is represented
by the following function (see Eq. (5.7)):

ψ(t) = sin(ω0t)e
−atH(t), (5.12)

whereH is the Heaviside function. In this case the whole vibrating plate (−l ≤ x ≤
l, 0 ≤ y ≤ b) moves up and down as a rigid plate (see figure (5.1)).

The simulations have been performed forω0 = 4
3 , l = 5 anda = 0.05.

5.3 Analytical Solution

In this section the analytical solution is presented briefly, the reader is referred to
Blom[25, 26] for a detailed description of the solution method.

The analytical solution of the described problem can be written in the following
form:

p(x, y, z, t) ∼= p0(x, t) +
∞
∑

k=1

cos(kπz)pk(x, t). (5.13)

The termp0 represents a propagating (plane) wave or mode travelling to the right
(in the positivex-direction), with the pressure perturbationspk, represents waves af-
fected by reflection, scattering, diffraction etc. Blom[25] did not find closed solutions
for pk, except fort→ ∞.

5.4 Numerical Results

For the verification of the computational method the numerical results are com-
pared with the analytical solution obtained by Blom [25, 26].
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When the mean flow is absent (M = 0), the problem is symmetrical with respect to
the planex = 0, which has also been verified numerically. The rectangular domain is
given byx ∈ [0, 40], y ∈ [0,∆y] andz ∈ [0, 1], where all lengths are nondimensional
and∆y is the size of the element iny-direction. The location ofxmax (=40) is chosen
such that the plane wave does not reach the boundary in the time considered in the
simulation. At the end planes of the duct, the characteristic non-reflecting boundary
conditions are applied, while solid-wall boundary conditions are applied atthe other
walls except the vibrating wall segment.

The hexahedral mesh is obtained by partitioning the physical domain into equally
sized cubes. The problem is two-dimensional but a three-dimensional method is
applied to obtain the numerical results. In order to reduce the computation time, after
verifying that there is indeed no effect of the third direction to the numericalsolution,
only one cell is used in they-direction. In order to obtain the tetrahedral mesh,
equally sized cubes are all divided into twelve identical tetrahedrons. Employing the
centroid of the cubical basic element as additional point which yields a pyramid for
each face of the cube. Dividing the faces in two by a diagonal gives the 12 equal
tetrahedrons in total. In this way a reasonably regular tetrahedral mesh is obtained.

The results for the tetrahedral mesh are obtained for a cubical background mesh
consisting of200 × 1 × 5 (1000) elements inx-, y- andz-directions, respectively.
This results in 12000 tetrahedral elements.

During the computations the results are obtained at the cell centers and subse-
quently as a post-processing the values at all element corner points are evaluated
using the basis functions. The node values are then obtained by averaging over all
corner points of the cells that are common to more than one element. Additionally
a time history of the perturbation variables is recorded at certain locations (not nec-
essarily a node point) throughout the rectangular duct. These locations are called
microphone(mic) locations.

5.4.1 Comparison with results obtained for tetrahedral mesh (ω0 =
4
3
, l =

5, a = 0.05)

The results obtained for the hexahedral mesh are compared with the analytical
solution and with the existing results obtained for the tetrahedral mesh by Blom[25,
26]. Figure (5.2) shows the time histories of the pressure perturbation at the mic
locationx = 5.025, y = ∆y/2, z = 0.475. It should be kept in mind that the
analytical solution plotted in the figure represents only the propagating partof the
solution (p0 term, see Eq.(5.13)) while the other effects are neglected (pk terms).

Although the result obtained for the hexahedral mesh seems to fit the analyticsolu-
tion better than the result obtained for the tetrahedral mesh, it should be emphasized
again that the analytical solution plotted is not complete. The deviation of the result
obtained on the much finer (than the hexahedral mesh used) tetrahedral mesh from
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the analytical solution suggests that the effects neglected in the analytical solution
(pk terms) are not captured in the solution obtained on the hexahedral mesh.

At a location further away from the vibrating wall segment the effect of thene-
glected terms is negligible. Figure (5.4) shows time histories of the pressure pertur-
bations at themic locationx = 20.075, y = ∆y/2 andz = 0.475. Now there is
less detail in the signal and the results obtained on both meshes agree while also the
deviation from the analytical solution (p0) is small.
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FIGURE 5.2: Comparison of the time histories of the pressure perturbations atx = 5.025,
y=∆y/2, z = 0.475. The order of approximation isp = 1, ω0 = 4

3
, l = 5, a = 0.05

5.4.2 Grid Convergence

The results obtained for the hexahedral mesh suggest that a finer mesh isrequired.
In order to determine the mesh that is fine enough a grid convergence studyhas been
performed using three different hexahedral meshes: one with400× 1× 10, one with
800×1×20 and the final one with1600×1×40 elements inx-, y- andz-directions,
respectively. Since the analytical solution is not complete, using it as a reference
to calculate the error for the different grids is not possible. Instead, using the time
histories of the solutions at certainmic locations an approximation of the ”exact”
solution is calculated whenh→ 0 by applying an extrapolation of the form:
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p′(x = 5.025, y =
∆y

2
, z = 0.475, t) − p′

exact
(x = 5.025, y =

∆y

2
, z = 0.475, t)

= ã(t)h+ b̃(t)h2, (5.14)

for a given time step of the Runge-Kutta time integration scheme. This time step
(∆t = 0.001) is assumed to be small enough that the solution is time converged on
each grid used. The results on the 3 finest grids are used to computepexact, ã(t)
andb̃(t). It is observed that the magnitude ofã(t) is one order of magnitude smaller
than the magnitude of̃b(t). The time evaluation of̃a(t) andb̃(t) are shown in figure
(5.6). After obtaining the approximate ”exact” solution the absolute error for each
grid is calculated by using an integral norm like the one introduced in Eq. (4.26) but
now for the solution as function of time using the solutiontn = n∆t as data where
n = 1, 2, .., 40000. Figure (5.7) shows the absolute error for the three different grids
used. It can be seen that the absolute error decreases slower thanch, the size of
an element. Since the method applied is second-order accurate in space onewould
expect to get an accuracy (see figure (5.7)) close to second-order, i.e. h2. However,
the solutions used for the present analysis contain errors from the time discretization.
For the three simulations on different meshes the time step has been kept constant
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FIGURE 5.3: A detailed view of the comparison of the time histories of thepressure per-
turbations atx = 5.025, y=∆y/2, z = 0.475. The order of approximation isp = 1, ω0 =
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FIGURE 5.4: Comparison of the time histories of the pressure perturbations atx = 20.075,
y=∆y/2, z = 0.475. The order of approximation isp = 1, ω0 = 4

3
, l = 5, a = 0.05.

leading to a different CFL number on each mesh. Although the CFL number is
small enough for the procedure on the finest mesh to be stable the error due to time
discretization has to be expected to be largest on the finest mesh. To truly check the
spatial accuracy of the time-dependent solution the semi-discrete (time-converged)
solutions have to be used. This has not been presented for the presentcase.

In figure (5.8) the results obtained for finer meshes are compared with the result
obtained for the tetrahedral mesh and the analytical solution (p0 part only). The
figure shows that the results obtained for the hexahedral mesh using4000 elements
(400×1×10 mesh) is almost identical to the result obtained for the tetrahedral mesh
using12000 elements. It can be concluded that theDG method applied on hexahedral
elements appears to converge faster forh→ 0 than the method applied on tetrahedral
elements. Two detailed views for various time strips are plotted in figures (5.9) and
(5.10).

Figures (5.11), (5.12) and (5.13) show contour plots for the pressureperturbation
in the planey = ∆y/2 at different dimensionless timesti, together with plots of
the pressure perturbationp(x,∆y/2, 0.25, ti). In all three figures the same plotting
levels for the contours are used. Only pressure levels between -0.01 and 0.01 have
been presented, i.e. every value abovep = 0.01 is white (see legend), every value
belowp = −0.01 is black. These small pressure levels are convenient to track the
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(initially) small perturbations related to thepd (or pk) term of the analytical solution.
It is noted that the horizontal and vertical coordinate axis used for the contour plot
are not of the same scale. Next to each contour plot there is a figure showing the
pressure perturbationp(x,∆y/2, 0.25, ti) obtained for the same dimensionless time
ti. The plotting levels in these figures have been adjusted to capture the minimum
and maximum pressure perturbation in the duct.

Figure (5.11) presents results for dimensionless timest = 0.4, 0.8, 1.2, 1.6, 2.0
and2.4. At these dimensionless times the flow is not (much) effected by reflections
from the top wall of the duct. Fromt > 0 the vibrating wall introduces a perturbation
travelling from the vibrating wall atz = 0 to the top wall atz = 1. The perturba-
tion reaches the top wall atz = 1 (at and nearx = 0) after approximatelyt = 1
dimensionless time units.

Figure (5.12) presents results for dimensionless timest = 3.2, 4.4, 5.2, 6.4, 7.2
and8.0. At these dimensionless times the plane wave pulsep0, which obtains its
pulse shape aftert = 1, can be observed to move away from the vibrating wall
region.

Figure (5.13) presents results for dimensionless timest = 10.0, 12.0, 16.0, 20.0,
30.0 and40.0. At these dimensionless times the plane wave pulsep0 can be observed
to propagate further away inx-direction from the vibrating wall region at the speed of
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FIGURE 5.5: A detailed view of the comparison of the time histories of thepressure pertur-
bations atx = 20.075, y=∆y/2, z = 0.475. The order of approximation isp = 1, ω0 =
4
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FIGURE 5.6: The time evaluation of̃a(t) (left) andb̃(t) (right).
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FIGURE 5.7: L2-norm of error in time signal of pressure perturbation as function ofh at
x = 5.025, y = ∆y/2, z = 0.475 (solid line) and atx = 20.075, y = ∆y/2, z = 0.475

(dashed line). The order of approximation isp = 1.

sound (= 1; it only has a velocity component inx-direction). It should be noted that
for the figures for the pressure perturbationp(x,∆y/2, 0.25, ti) the plotting scale for
the pressure perturbation is different in all three figures.
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FIGURE 5.8: Comparison of the time histories of the pressure perturbations atx = 5.025,
y=∆y/2, z = 0.475 for grid refinement. The order of approximation isp = 1, ω0 = 4

3
, l =

5, a = 0.05, ∆t = 1.0 · 10−3.

In between the vibrating wall and the pulse, pressure perturbations are propagating
with the ambient speed of sound as well. However, near the vibrating wall theveloc-
ity vector of the pressure perturbations have a significant component inz-direction,
while just behind the pulse the velocity component inz-direction has reduced to zero.
This can be seen in figure (5.13) by picking a black or white region (forx > 5) for
t = 10.0 and following it until t = 40.0. When propagating further away from
the vibrating wall the amplitude of the perturbations decreases (exceptp0 of course).
With increasing time the amplitude of the pressure perturbations, at a fixedx loca-
tion, increase in amplitude (because of resonance). These pressure fluctuations form
an anti-symmetric pattern with respect toz = 0.5 in the duct.

5.4.3 p-refinement

Finally, a p-refinement study has been performed. A hexahedral mesh of 1000
(200× 1× 5) elements is used for the second (p = 1), third (p = 2) and fourth-order
(p = 3) accurate numerical method. The results are compared with the results ob-
tained by the second-order method on the hexahedral mesh of 64000 (1600× 1× 40)
elements and on the tetrahedral mesh of 12000 elements as well as the analytical so-
lution (p0 part only), see figure (5.14). A closer inspection of the solutions reveals
that a fourth-order method on a mesh of 1000 elements gives results very close to the
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results obtained using a second-order method on a mesh of 64000 elements.Noting
that the time required to advance the numerical solution one time step for the fourth-
order method on 1000 elements is about 17 times less (see table (5.1)) than forthe
second-order method on 64000 elements, it is a considerable gain in terms ofcompu-
tational time. Detailed views for various time strips are plotted in figures (5.15) and
(5.16).

The simulations have been performed on SGI Origin200 MIPS RISC R12000
processor with a clock speed of 270 MHz. The time required to advance theso-
lution one time step is shown in table (5.1).
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FIGURE 5.9: A detailed view of the comparison of the time histories of thepressure pertur-
bations atx = 5.025, y=∆y/2, z = 0.475 for grid refinement. The order of approximation
is p = 1, ω0 = 4

3
, l = 5, a = 0.05, ∆t = 1.0 · 10−3.
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FIGURE 5.10:A detailed view of the comparison of the time histories of thepressure pertur-
bations atx = 5.025, y=∆y/2, z = 0.475 for grid refinement. The order of approximation
is p = 1, ω0 = 4

3
, l = 5, a = 0.05, ∆t = 1.0 · 10−3.

number of elements order of accuracy (p+ 1) CPU time per time step (seconds)
1000 2 0.42
1000 3 0.76
1000 4 1.59

4000 2 1.68
9000 2 3.87
16000 2 6.87
64000 2 27.63

TABLE 5.1: The time required for the numerical simulations on the hexahedral mesh.
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FIGURE 5.11: Vibrating wall segmentx ∈ [0, 5]. Left: Contour plots for the pressure
perturbation in the plane∆y/2 for t = 0.4 to 2.4. (ω0 = 4

3
, l = 5, a = 0.05). Right:

Pressure perturbation for∆y/2 and z = 0.25. Note the large difference in plotting scales
for the pressure.∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 5.12: Vibrating wall segmentx ∈ [0, 5]. Left: Contour plots for the pressure
perturbation in the plane∆y/2 for t = 3.2 to 8.0. (ω0 = 4

3
, l = 5, a = 0.05). Right:

Pressure perturbation for∆y/2 and z = 0.25. Note the large difference in plotting scales
for the pressure.∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 5.13: Vibrating wall segmentx ∈ [0, 5]. Left: Contour plots for the pressure
perturbation in the plane∆y/2 for t = 10.0 to 40.0. (ω0 = 4

3
, l = 5, a = 0.05). Right:

Pressure perturbation for∆y/2 and z = 0.25. Note the large difference in plotting scales
for the pressure.∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 5.14:Comparison of the time histories of the pressure perturbations atx = 5.025,
y=∆y/2, z = 0.475 for p refinement.ω0 = 4

3
, l = 5, a = 0.05, ∆t = 1.0 · 10−3.
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FIGURE 5.15:A detailed view of the comparison of the time histories of thepressure pertur-
bations atx = 5.025, y=∆y/2, z = 0.475 for p refinement.ω0 = 4

3
, l = 5, a = 0.05, ∆t =

1.0 · 10−3.
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FIGURE 5.16:A detailed view of the comparison of the time histories of thepressure pertur-
bations atx = 5.025, y=∆y/2, z = 0.475 for p refinement.ω0 = 4
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5.5 Velocity Boundary Condition

5.5.1 Introduction

In the solution presented in the previous sections of this chapter the normal velocity
profileψ(x, y, t) is described and the wall displacementzs(x, y, t) is reconstructed.
In certain cases prescribing the velocity profile might lead to non-realistic wall dis-
placements or it might not be possible to obtain the actual wall displacement without
using numerical quadrature. Hence, it is more logical to choose the wall displacement
zs(x, y, t) and derive the normal velocity profileψ(x, y, t) from it.

In this section the problem described in section 5.2 has been solved by prescrib-
ing the wall displacementzs(x, y, t) instead of the normal velocity profileψ(x, y, t).
Note that, prescribing the wall displacementzs(x, y, t) as it is derived from the ve-
locity profileψ(x, y, t) in the previous sections will result in identical results. Thus,
the aim of this section is to choose a wall displacementzs(x, y, t) and perform the
simulations accordingly.

5.5.2 Numerical Results

Let us now consider the following wall displacement:

zs(x, y, t) = cos(χnx)sin(ω0t)H(t). (5.15)

The normal velocity profileψ(x, y, t) can be derived from the wall displacement as
follows:

−ψ(x, y, t) =
∂zs
∂t

+M
∂zs
∂x

, (5.16)

inserting equation Eq. (5.15) into Eq. (5.16) leads in to the normal velocity profile
ψ(x, y, t) of the following form:

ψ(x, y, t) = ω0 cos(χnx) sin(ω0t) −Mχn sin(χnx) sin(ω0t) (5.17)

together withω0 = 1, χn = nπ
2l and the length of the vibrating part of the wall

l = 1. The simulations are performed on a hexahedral mesh with 400x1x5 elements
in x−, y− andz−directions respectively for a computational domain which is given
by x ∈ [−40, 40], y ∈ [0,∆y] andz ∈ [0, 1]. The results are obtained for the case
without mean flow (M = 0.0) as well as with the mean flow forM = 0.1 and
0.2 where the mean flow velocity vector, expressed as Mach-number components, is
given by(M, 0, 0)T .

Figure (5.17) presents the comparison of the time histories of the pressure pertur-
bations atx = 20.075, y = ∆y/2 andz = 0.475 for M = 0.0, 0.1 and0.2. It is
clear that with increased mean flow velocityM , the signal from the vibrating wall
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FIGURE 5.17:Comparison of the time histories of the pressure perturbations atx = 20.075,
y=∆y/2, z = 0.475 for M = 0.0, 0.1 and0.2 for the case of prescribed wall displacement
zs. ω0 = 1, l = 1, a = 0.0, ∆x = ∆y = ∆z = 0.2, ∆t = 1.0 · 10−3.

reaches the microphone earlier, as expected. It is also observed that for M > 0 the
amplitude has decreased while the observed frequency of the signal does not change.

Figure (5.18) presents the comparison of the time histories of the pressure pertur-
bations atx = −20.075, y = ∆y/2 andz = 0.525 for M = 0.0, 0.1 and0.2. As
expected, at a microphone location at a certain upstream distance from thevibrating
wall, the signal is observed later than in the caseM = 0. From the figure it is further-
more observed that forM > 0 the measured pressure amplitude is larger upstream
than forM = 0. The observed frequency of the signal, again, is not changed.
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FIGURE 5.18: Comparison of the time histories of the pressure perturbations atx =

−20.075, y=∆y/2, z = 0.525 for M = 0.0, 0.1 and 0.2 for the case of prescribed wall
displacementzs. ω0 = 1, l = 1, a = 0.0, ∆x = ∆y = ∆z = 0.2, ∆t = 1.0 · 10−3.
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FIGURE 5.19: Vibrating wall segmentx ∈ [−5, 5]. Left: Contour plots for the pressure
perturbation in the plane∆y/2 for t = 0.4 to 2.4. (ω0 = 4

3
, l = 5, a = 0.05). Right:

Pressure perturbation for∆y/2 and z = 0.25. Note the large difference in plotting scales
for the pressure (∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3).
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FIGURE 5.20: Vibrating wall segmentx ∈ [−5, 5]. Left: Contour plots for the pressure
perturbation in the plane∆y/2 for t = 3.2 to 8.0. (ω0 = 4

3
, l = 5, a = 0.05). Right:

Pressure perturbation for∆y/2 and z = 0.25. Note the large difference in plotting scales
for the pressure (∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3).
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FIGURE 5.21: Vibrating wall segmentx ∈ [−5, 5]. Left: Contour plots for the pressure
perturbation in the plane∆y/2 for t = 10.0 to 40.0. (ω0 = 4

3
, l = 5, a = 0.05). Right:

Pressure perturbation for∆y/2 and z = 0.25. Note the large difference in plotting scales
for the pressure (∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3).
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EFFECTS OFGRID DISTORTION

6.1 Introduction

Throughout this thesis hexahedral elements are used in the numerical algorithm, with
the shape of the elements restricted to parallelepipeds, for the sake of retaining a lin-
ear transformation from physical to the computational coordinates. It is clear that for
solution domains with complex geometries we have to resort to more general hexahe-
dral elements and the approach of a linear(ized) transformation will be inadequate, or
rather constitutes an approximation. In this chapter the effect of non-parallelepiped
elements, i.e. of grid distortion is investigated considering two cases. In the first
case the grid is skewed at a certain angle while keeping the shape of the elements
as parallelepiped and in the second case the grid is randomly distorted, violating the
restriction to parallelepiped elements. In the skewed mesh case both theinflow and
theoutflowboundaries of the domain are also skewed while in the randomly distorted
mesh the domain boundaries are retained as (y,z)-planes.

In the context of this chapter the problem considered in the preceding chapter of
the vibrating wall segment is re-visited since it is advantageous to consider aproblem
for which the results are similar and can be used as a guide line. Also the problem
considered is 2D which allows us to investigate the effects of grid distortion more
clearly.

Note that the present duct configuration is different from the one in chapter 5 in
that of the duct is shorter, i.e.x ∈ [0, 10] rather thanx ∈ [0, 40], which saves com-
puting time, and we wish to consider the near-field wave pattern. Furthermore, the
length of the vibrating wall segment has now been chosen asx ∈ [0, 2.5] rather than
x ∈ [0, 5], in order to capture the near-field within the domain considered. The plane
x = 0 is a plane of symmetry for the configuration, but as in chapter 5 whenever
appropriate, we consider the whole configuration, i.e.x ∈ [−10, 10]. In all cases we
takeω0 = 4

3 anda = 0.05. In the following sections the effect of grid distortion is
analyzed for the two types of grid distortion considered and the numerical results are
discussed.
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FIGURE 6.1: Skewed mesh forα = 10 deg.

6.2 Skewed Mesh

In this section the effect of a skewed grid is analyzed. In the skewed gridcase the
elements are restricted to parallelepipeds as in the previous chapters. The faces of the
solution domain that coincide with thex− z plane are skewed at a certain angle ”α”
and then partitioned into equally sized cells with opposite faces that are parallel. The
mesh is shown in figure (6.1). In total three angles are considered namelyα = 2.5,
α = 5 andα = 10 deg.

6.2.1 Numerical Results

The simulations have been performed for a quiescent background (M = 0). For
the skewed mesh case the problem cannot be assumed geometrically symmetrical
with respect to thex = 0 plane, thus the whole domain is considered. The paral-
lelepiped domain is given byx ∈ [−10 + ztanα, 10 + ztanα], y ∈ [0,∆y] and
z ∈ [0, 1], where all lengths are non-dimensional and∆y is the size of the element
in y-direction. At the end planes of the duct, the characteristic non-reflectingbound-
ary conditions are applied, while solid-wall boundary conditions are applied at the
other walls except the vibrating wall segment. The location ofxmax(= 10) is chosen
such that the plane wave does not reach the boundary in the time considered in the
simulation. The hexahedral mesh is obtained as explained above. The problem is
two-dimensional but the method for three-dimensional wave-propagation problems
is applied to obtain the numerical results.

During the computations the solution obtained at the cell centers and subsequently
as a post-processing the values at all element corner points are evaluated using the
basis functions. The node values are then obtained by averaging over all corner points
of the cells that are common to more than one element. Additionally a time history
of the perturbation variables is recorded at certain locations (not necessarily a node
point or a centroid) throughout the rectangular duct. These locations are calledmi-
crophonelocations. The solution at the microphone location is obtained directly from
the solution using the base functions.

In the preceding chapter the need for a grid refinement study has already been
discussed. In the light of that discussion a similar grid convergence studyis also
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performed here using three different hexahedral meshes: one with200 × 1 × 10,
one with400 × 1 × 20 and the final one with800 × 1 × 40 elements inx-, y- and
z-directions, respectively.

The upper part of figures (6.2) and (6.3) shows the time histories of the pressure
perturbation for the skewness angleα = 2.5 deg, recorded at (x = 3.0125, y =
∆y/2, z = 0.0125) and (x = 9.0125, y = ∆y/2, z = 0.0125), respectively, while
the lower part shows a detailed view. These microphone positions are chosen such
that they are at the centroid of an element of the finest mesh and away fromthe
edges of the elements of the coarser meshes. In figures (6.2) and (6.3) results of the
method for various mesh sizes are compared with the solution obtained on the finest
cartesian mesh (α = 0) at the same microphone positions. The results show that a
grid distortion ofα = 2.5 deg skewness angle does not affect the solution very much.
These time histories of the pressure perturbations at a location close to the vibrating
segment, i.e. figure (6.2), clearly show the wave originating from the oscillatory
segment and the wave reflected from the top wall. At the location further away from
the vibrating segment the wave is almost one-dimensional.

Similar plots are shown for the grid distortion skewness angleα = 5 and10 deg
in figures (6.4) to (6.7). These results indicate that the solution is affected somewhat
more for larger values ofα, but remains fairly limited for the degree of distortion
considered.

In figures (6.8) and (6.9) the time histories of the pressure perturbation is plotted
showing a comparison between the results for various values of the grid distortion
angle for the finest mesh atx = 3.0125 andx = 9.0125, respectively. If the solution
for α = 0 (undistorted case) is taken as a reference then it can be concluded thatwhen
increasing the grid distortion angle the deviation from the undistorted case increases
gradually.

In the left parts of figures (6.10, 6.11 and 6.12) contour plots for the pressure per-
turbation in the planey = ∆y/2 for t = 0.4 to 7.2 are shown while in the right parts
the pressure perturbations along the (horizontal) liney = ∆y/2, z = 0.25 as well as
along the (vertical) linex = 0, y = ∆y/2 are plotted. This data is for the mesh with
800 × 1 × 40 elements inx−, y− andz−directions, respectively. These plots show
a similar wave pattern as found in chapter 5 for the longer vibrating wall segment.
Above, as well as close to the vibrating wall segment, a relatively complex pattern
develops, while away from this segment plane waves evolve.
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FIGURE 6.2: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Compar-

ison of the time histories ofp′ at (x = 3.0125 , y = ∆y/2, z = 0.0125) for various mesh
sizes forα = 2.5 deg. (top). Detailed view (bottom). The order of approximation isp = 3.
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FIGURE 6.3: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Compar-

ison of the time histories ofp′ at (x = 9.0125 , y = ∆y/2, z = 0.0125) for various mesh
sizes forα = 2.5 deg. (top). Detailed view (bottom). The order of approximation isp = 3.
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FIGURE 6.4: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Compar-

ison of the time histories ofp′ at (x = 3.0125 , y = ∆y/2, z = 0.0125) for various mesh
sizes forα = 5 deg. (top). Detailed view (bottom). The order of approximation isp = 3.
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FIGURE 6.5: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Compar-

ison of the time histories ofp′ at (x = 9.0125 , y = ∆y/2, z = 0.0125) for various mesh
sizes forα = 5 deg. (top). Detailed view (bottom). The order of approximation isp = 3.
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FIGURE 6.6: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Compar-

ison of the time histories ofp′ at (x = 3.0125 , y = ∆y/2, z = 0.0125) for various mesh
sizes forα = 10 deg. (top). Detailed view (bottom). The order of approximation isp = 3.
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FIGURE 6.7: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Compar-

ison of the time histories ofp′ at (x = 9.0125 , y = ∆y/2, z = 0.0125) for various mesh
sizes forα = 10 deg. (top). Detailed view (bottom). The order of approximation isp = 3.
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FIGURE 6.8: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Com-

parison of the time histories ofp′ at (x = 3.0125 , y = ∆y/2, z = 0.0125) for 800x1x40
mesh for various values of grid distortion angleα. (top). Detailed view (bottom). The order
of approximation isp = 3.
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FIGURE 6.9: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Com-

parison of the time histories ofp′ at (x = 9.0125 , y = ∆y/2, z = 0.0125) for 800x1x40
mesh for various values of grid distortion angleα. (left). Detailed view (right). The order of
approximation isp = 3.
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FIGURE 6.10: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05, α = 10

deg. Left: Contour plots for the pressure perturbation in the planey = ∆y/2 for t = 0.4

to 2.4. Middle: Pressure perturbation along line (y = ∆y/2, z = 0.25). Right: Pressure
perturbation along line (x = 0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 6.11: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05, α = 10

deg. Left: Contour plots for the pressure perturbation in the planey = ∆y/2 for t = 2.8

to 4.8. Middle: Pressure perturbation along line (y = ∆y/2, z = 0.25). Right: Pressure
perturbation along line (x = 0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 6.12: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05, α = 10

deg. Left: Contour plots for the pressure perturbation in the planey = ∆y/2 for t = 5.2

to 7.2. Middle: Pressure perturbation along line (y = ∆y/2, z = 0.25). Right: Pressure
perturbation along line (x = 0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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6.2.2 Accuracy

In the preceding section the effect of the skewness angleα is shown in terms of
details of the perturbation pressure field. The following analysis is conducted to
assess the effect of the grid distortion parameter in terms ofL2-norms of differences
between the time histories at two microphone locations. For each angleα0(= 0), α1,
α2 andα3 and for each mesh sizeh1, h2 andh3, with h1 the coarsest andh3 the
finest mesh, we have signalp′(t;hi, αj), i.e. there are 12 signals in total for each
microphone position considered. Taking the result of the simulation forh3, α = 0
as a reference solution the difference (”error”) with respect to this solution can be
calculated for each angle and mesh size considered, as follows:

||ε||ij =

√

√

√

√

√

1

T

T
∫

0

{p′(t;hi, αj) − p′(t;h = h3, α = 0)}2 dt (6.1)

The integral in Eq. (6.1) is approximated by Gaussian quadrature for0 ≤ t ≤ T = 10
using a fixed∆t of 1.0 × 10−3.

The upper part of figure (6.13) shows the error as function of the angle α for the
mesh sizes considered for the order of accuracyp = 1 and the lower part for the
order of accuracyp = 3. It is clear from these figures that the ”error” decreases with
increasing order of accuracy as expected. It can be concluded thatfor each order, for
each mesh considered, the difference increases with increasing grid distortion. The
order of magnitude of the effect of grid distortion, for small grid distortions, is of the
same order of magnitude as the difference between solutions for different mesh sizes.
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FIGURE 6.13: Results for vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a =

0.05. L2-norm of difference of time history of pressure perturbation with that of reference
solution as function of grid distortion angles for various grid sizes at location (x = 3.0125,
y = ∆y/2, z = 0.0125). Order of approximation isp = 1 (top),p = 3 (bottom).
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6.3 Randomly Distorted Mesh

In this section the effect of a randomly distorted grid is analyzed. In the randomly
distorted grid case the elements are not restricted to parallelepipeds, which differs
from the case considered in the preceding section. The hexahedral base mesh is ob-
tained by partitioning the physical domain into equally sized cubes. The base mesh
is shown in the left hand side of figure (6.14).

��

r α ��

FIGURE 6.14:Randomly distorted mesh generation.

For each grid point that does not coincide with the boundary an angle ”θ” and a
radius ”r” are chosen randomly and the new coordinate of the grid point is calculated
with the distortion(∆x,∆y)T = r(cosθ, sinθ)T . The values ofr are limited to2.5,
5 and10% of the length of the cell edge, here referred as the distortion parameter ”d”.
The right hand side of figure (6.14) shows the distorted grid after one grid point has
been processed. Figure (6.15) shows the distorted grid generated forthe distortion
parametersd = 2.5 andd = 10, respectively.

FIGURE 6.15: Randomly generated mesh distortion for distortion parameters d=2.5 (left)
and d=10 (right).

As can be seen from the figures the grid generated in this way is 2D. Recallthat the
numerical algorithm used to solve the linearized Euler equations solves the problem
in 3D. To keep the 2D nature of the problem the grid generated in 2D is copiedin the
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third direction while, as before, one cell used in that direction.

6.3.1 Numerical Results

The simulations are performed for a quiescent background (M = 0). For the
randomly distorted mesh case the mesh is assumed to be symmetrical with respect to
the planex = 0. The rectangular domain is given byx ∈ [0, 10], y ∈ [0,∆y] and
z ∈ [0, 1], where all lengths are non-dimensional and∆y is the size of the element in
y-direction. At the end planes of the duct, the characteristic non-reflectingboundary
conditions are applied, while solid-wall boundary conditions are applied atthe other
walls except on the vibrating wall segment. The location ofxmax(= 10) is chosen
such that the plane wave does not reach the boundary in the time considered in the
simulation.

During the computations the solution is obtained at the cell centers and subse-
quently as a post-processing the values at all element corner points are evaluated
using the basis functions. The node values are then obtained by averaging over all
corner points of the cells that are common to more than one element. Additionally
a time history of the perturbation variables is recorded at certain locations (not nec-
essarily a node point) in the rectangular duct. These locations are calledmicrophone
locations.

In the preceding chapter the need for a grid refinement study has already been
discussed. In the light of that discussion a similar grid convergence studyis also
performed here using three different hexahedral meshes: one with100 × 1 × 10,
one with200 × 1 × 20 and the final one with400 × 1 × 40 elements inx-, y- and
z-directions, respectively.

The upper parts of figures (6.16) and (6.17) show the time histories of the pressure
perturbation for a distortion parameterd = 2.5 recorded at (x = 3.0125, y = 1

2∆y,
z = 0.5125) and (x = 9.0125, y = 1

2∆y, z = 0.5125), respectively, while the lower
parts show a detailed view.

A similar plot is shown for the distortion parametersd = 5 and10 in figures (6.18)
to (6.21).

In figures (6.22) and (6.23), the time histories of the pressure perturbation is plotted
showing a comparison between the various values of the distortion parameterfor the
finest mesh at (x = 3.0125, y = 1

2∆y, z = 0.5125) and (x = 9.0125, y = 1
2∆y, z =

0.5125), respectively. If the solution for the distortion parameterd = 0 (undistorted
case) is taken as a reference then it can be concluded that increasing the distortion
parameter the deviation from the undistorted case increases.

In the left parts of figures (6.24, 6.25 and 6.26) contour plots for the pressure
perturbation in the planey = ∆y/2 for t = 0.4 to 7.2 are shown, while in the
right parts the pressure perturbation along the line (y = ∆y/2, z = 0.25), and the
line (x = 0, y = ∆y/2) are plotted. This data is for the mesh with400 × 1 × 40
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FIGURE 6.16:Vibrating wall segmentx ∈ [0, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Comparison

of the time histories ofp′ at (x = 3.0125 , y = ∆y/2, z = 0.5125) for various mesh sizes for
d = 2.5. (top). Detailed view (bottom). The order of approximationis p = 3.

elements inx−, y− andz−directions, respectively. Comparison of these results with
the corresponding results for the skewed mesh show that, judging from these plots,
the differences are small.

However, in the results for the randomly distorted mesh small-amplitude wiggles
are present in the time-history of the pressure perturbation, figures (6.16 - 6.23), as
well as in the snapshots of the pressure perturbation, figures (6.24 - 6.26). Figures
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FIGURE 6.17:Vibrating wall segmentx ∈ [0, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Comparison

of the time histories ofp′ at (x = 9.0125 , y = ∆y/2, z = 0.5125) for various mesh sizes for
d = 2.5. (top). Detailed view (bottom). The order of approximationis p = 3.

(6.16) to (6.23) indicate that the amplitude increases with increasing value of the dis-
tortion parameterd. The snapshots in figures (6.24) to (6.26) are for the largest value
of d considered, i.e.d = 10. The wavelength of the wiggles appears to correspond
with the element size∆x(= ∆y = ∆z). For example in the bottom figure of figure
(6.20), ford = 10, the element size of the finest mesh is∆x = 1/40 = 0.025, the
wavelength of the small disturbance on the time history is aboutT = 2c∆x = 0.05.



6.3. RANDOMLY DISTORTEDMESH 103

t

p’

0 2 4 6 8 10

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

100 x 1 x 10, d=5.0
200 x 1 x 20, d=5.0
400 x 1 x 40, d=5.0
400 x 1 x 40, d=0.0

t

p’

2.4 2.6 2.8 3 3.2
-0.72

-0.7

-0.68

-0.66

-0.64

100 x 1 x 10, d=5.0
200 x 1 x 20, d=5.0
400 x 1 x 40, d=5.0
400 x 1 x 40, d=0.0

FIGURE 6.18:Vibrating wall segmentx ∈ [0, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Comparison

of the time histories ofp′ at (x = 3.0125 , y = ∆y/2, z = 0.5125) for various mesh sizes for
d = 5. (top). Detailed view (bottom). The order of approximationis p = 3.

For the snapshot, e.g. figure (6.24), right figure, suggests a wave length ofL = 0.1,
twice the wavelength in longitudinal direction, which will be due to the boundary
conditions at the duct walls.



104 CHAPTER 6. EFFECTS OFGRID DISTORTION

t

p’

0 2 4 6 8 10

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

100 x 1 x 10, d=5.0
200 x 1 x 20, d=5.0
400 x 1 x 40, d=5.0
400 x 1 x 40, d=0.0

t

p’

8.4 8.6 8.8 9 9.2
-0.72

-0.7

-0.68

-0.66

-0.64

100 x 1 x 10, d=5.0
200 x 1 x 20, d=5.0
400 x 1 x 40, d=5.0
400 x 1 x 40, d=0.0

FIGURE 6.19:Vibrating wall segmentx ∈ [0, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Comparison

of the time histories ofp′ at (x = 9.0125 , y = ∆y/2, z = 0.5125) for various mesh sizes for
d = 5. (top). Detailed view (bottom). The order of approximationis p = 3.
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FIGURE 6.20:Vibrating wall segmentx ∈ [0, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Comparison

of the time histories ofp′ at (x = 3.0125 , y = ∆y/2, z = 0.5125) for various mesh sizes for
d = 10. (top). Detailed view (bottom). The order of approximationis p = 3.
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FIGURE 6.21:Vibrating wall segmentx ∈ [0, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Comparison

of the time histories ofp′ at (x = 9.0125 , y = ∆y/2, z = 0.5125) for various mesh sizes for
d = 10. (top). Detailed view (bottom). The order of approximationis p = 3.
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FIGURE 6.22:Vibrating wall segmentx ∈ [0, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Comparison

of the time histories ofp′ at (x = 3.0125 , y = ∆y/2, z = 0.0125) for 400x1x40 mesh for
various values of grid distortion parametersd (top). Detailed view (bottom). The order of
approximation isp = 3.
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FIGURE 6.23:Vibrating wall segmentx ∈ [0, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05. Comparison

of the time histories ofp′ at (x = 9.0125 , y = ∆y/2, z = 0.0125) for 400x1x40 mesh for
various values of grid distortion parametersd (top). Detailed view (bottom). The order of
approximation isp = 3.
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FIGURE 6.24: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05, d=10.

Left: Contour plots for the pressure perturbation in the plane y = ∆y/2 for t = 0.4 to
2.4. Middle: Pressure perturbation along line (y = ∆y/2, z = 0.25). Right: Pressure
perturbation along line (x = 0.0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 6.25: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05, d=10.

Left: Contour plots for the pressure perturbation in the plane y = ∆y/2 for t = 2.8 to
4.8. Middle: Pressure perturbation along line (y = ∆y/2, z = 0.25). Right: Pressure
perturbation along line (x = 0.0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 6.26: Vibrating wall segmentx ∈ [−2.5, 2.5], ω0 = 4

3
, l = 2.5, a = 0.05, d=10.

Left: Contour plots for the pressure perturbation in the plane y = ∆y/2 for t = 5.2 to
7.2. Middle: Pressure perturbation along line (y = ∆y/2, z = 0.25). Right: Pressure
perturbation along line (x = 0.0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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6.3.2 Accuracy

As in the preceding section the effect of the distortion parameterd is considered
here in terms of theL2-norms of the differences in the time history at a microphone
position. For each value of the distortion parameterd0 (=0), d1, d2 andd3 and for
each mesh sizeh1, h2 andh3 we have a signal as function of time, i.e. there are
12 signals in total. Taking the result of the simulation forh3, d = 0 as a reference
solution the dependency of the difference with respect to distortion parameter can be
calculated for each distortion parameter and mesh size considered, as follows:

||ε||ij =

√

√

√

√

√

1

T

T
∫

0

{p′(t, hi, dj) − p′(t, h = h3, d0 = 0)}2 dt (6.2)

The integral is approximated using Gaussian quadrature for0 ≤ t ≤ T = 10 using
a fixed∆t of 1.0 × 10−3. The present implementation of the method is restricted to
meshes with parallelepiped elements since the the transformation of the elements in
the physical space to the unit element in computational space is obtained by a linear
approximation. This implies that the present mapping is exact for parallelepiped ele-
ments and approximate for more general elements. Using a randomly distorted mesh
the restriction of using parallelepiped elements only is violated. In this case the linear
approximation no longer holds and the truncation error due to the linear mapping can
play a dominant role. TheL2-norm of the difference for each value of the mesh size
as a function of distortion parameterd for order of approximationp = 1 is shown in
the upper part of figure (6.27) and for order of approximationp = 3 it is shown in the
lower part. One may expect that with increasing order of approximation a significant
decrease in the error for a given mesh sizeh, and distortion parameterd as shown
in chapter 4 of this thesis. From the comparison of upper and lower parts offigure
(6.27) it is clear that for higher values ofd there is no significant decrease in error
with increasing order of approximation. This is because the truncation error due to
the linear mapping plays a dominant role in case of meshes with non-parallelepiped
elements.
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FIGURE 6.27: Results for vibrating wall segmentx ∈ [0, 2.5], ω0 = 4

3
, l = 2.5, a =

0.05. L2-norm of difference of pressure perturbation with reference solution as function of
distortion parameters for various grid sizes at location (x = 3.0125, y = ∆y/2, z = 0.0125)
for order of approximations p=1 (top) and p=3 (bottom).



114 CHAPTER 6. EFFECTS OFGRID DISTORTION



7 C
H

A
P

T
E

R

PLATE WITH SLIT INSIDE

INFINITE DUCT

7.1 Introduction

Acoustic liners are used in walls of exhaust systems of combustion engines and jet
engine in- and outlets to reduce noise radiation. The liners consist of up to several
layers of perforated plate backed with a honeycomb structure. It shouldbe noted that
when a liner is used the acoustic damping is nonlinear since it involves vortex shed-
ding or turbulence generation in response to the incident sound, but its representation
as an impedance boundary condition is linear.

In this chapter the DG method is applied to a generic acoustic liner problem. The
configuration consists of a flat plate with a single orifice (slit) positioned insidea
duct. The numerical results are compared to the analytical solution obtained for this
configuration by Kooijman et al.[64].

The problem is prescribed in section 7.2. In section 7.3 a brief description of the
analytical solution is given. The numerical results obtained for a quiescent back-
ground and the comparison of numerical results with the analytical solution are pre-
sented in section 7.4. In section 7.5 the duct modes are presented. The numerical
dispersion of the method is demonstrated in section 7.6. Finally in section 7.7 the
numerical results are presented for the solution obtained with the background flow
and the comparison to the solution obtained for a quiescent background.

7.2 Problem Description

As a validation case the method is applied to a problem in which an infinitely long
duct is split up longitudinally by a plate into two ducts. The plate has a transverse slit,
referred to as an aperture here, which forms a connection between the two parts of
the duct. The configuration is depicted in figure (7.1). The non-dimensional height
of the two parts of the duct is identical, i.e.h/2, whereh = (ω/c)h

′
. Hereω is

the radian frequency of sound,c the speed of sound andh
′

a height with dimension.
The non-dimensional width of the aperture is2s = 2(ω/c)s

′
, with s

′
a length with a
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dimension. In the computation the non-dimensional length of the duct is taken to be
equal to2L = 2(ω/c)L

′
, with L

′
a length with dimension.

The configuration is symmetric with respect to the vertical planex = L, i.e. the
plane passing through the middle of the aperture. The complete geometry is splitin 3
regions. An incoming wave is introduced at the open boundaries of region2, region 1
is in the lower part of the duct, opposite to region 2. Region 3 is the aperture region.
The time histories of the perturbations on the mean flow variables are recorded at
microphonesin vertical arrays at various locations in the duct.

We chooseL to be equal toL = 3 and h equal toh = 2. When the mean
flow is absent (M = 0), the flow problem is symmetrical with respect to the plane
x = L = 3, i.e. in that case it is sufficient to consider the left half of the configuration
only. It has also been verified that indeed for the no-flow case the numerical solution
is symmetric with respect to the planex = L when computing the solution in the
whole configuration.

The rectangular domain is now given byx ∈ [0, 3], y ∈ [0,∆y] andz ∈ [0, 2],
where all lengths are non-dimensional and∆y is the size of the element iny-direction.
The aperture has a half-width ofs = 0.125. At the end planes of the duct, the char-
acteristic non-reflecting boundary conditions are applied, while solid-wallboundary
conditions are applied on the other walls.

For the present diffraction problem a sine wave is introduced as an incoming wave
from the open boundary of region 2, i.e. both from the left and from the right. At
the open boundary at the left the Riemann invariant corresponding to the right run-
ning characteristic,R1(0, y, z, t) = ρ0c0u

′
(0, y, z, t) + p

′
(0, y, z, t), is prescribed

asAsinωt, while the Riemann invariant corresponding to the left running charac-
teristic,R2(0, y, z, t) = ρ0c0u

′
(0, y, z, t) − p

′
(0, y, z, t) = 0. At the right open

boundary we requireR1(2L, y, z, t) = ρ0c0u
′
(0, y, z, t) + p

′
(0, y, z, t) = 0 while

R2(2L, y, z, t) = ρ0c0u
′
(0, y, z, t) − p

′
(0, y, z, t) is prescribed asAsinωt. Vari-

ous frequencies are chosen, above as well as below the cut-off frequency of the duct
which isωc = π. Microphones are located in four vertical arrays close to the left end
of region 1 and region 2 (x = 0.5, y = ∆y/2, z ∈ [0, 1] andz ∈ [1, 2], respectively)
and close to the aperture (x = 2.5, y = ∆y/2, z ∈ [0, 1] andz ∈ [1, 2], respectively).
Each array of microphones consists of 40 microphones (a total of 160 microphones
in 2 regions).

7.3 Analytic Solution

The analytical solution is performed by Kooijman et al.[64] using a modal expan-
sion of the pressure field in the three regions 1, 2 and 3 (see figure (7.1)). By matching
the pressure and velocity at the interfaces between regions 1 and 3, andbetween re-
gions 2 and 3, a scattering matrix for the left boundary of region 3 is obtained. This
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FIGURE 7.1: Infinite plate with slit in duct.

matrix relates the amplitudes of the outgoing modesp−1 , p−2 , p+
3 to the amplitudes of

the incoming modesp+
1 , p+

2 , p−3 . By using these amplitudes reflection and transmis-
sion coefficients of the plane waves are calculated.

7.4 Numerical Results

For the verification of the computational method the numerical results are com-
pared with the analytical solution.

The hexahedral mesh is obtained by partitioning the physical domain into equally
sized cubes. The problem is two-dimensional but the method for three-dimensional
wave-propagation problems is applied to obtain the numerical results. In order to re-
duce the computation time, after verifying that there is no effect of the third-direction
in the numerical solution, only one cell is used in they-direction. A detailed (not-
equally scaled inx andz-directions) view of the hexahedral mesh around the aperture
is included in figure (7.2).

During the computations the results are obtained in the cell centers and subse-
quently, as a post-processing, the values in all nodes are evaluated using the basis
functions. The node values are averaged when the node points are common to more
than one element. The time history of the perturbation variables is recorded atthe
160 microphones in the four microphone arrays defined in figure (7.1).

Figure (7.3) presents forω = 1
2ωc, which is below the cut-off frequency, the time

evolution of the pressure and velocity perturbation recorded at the two array loca-
tions close to the left boundary. Shown are the array-averaged signalsof the 40
microphones, e.g.

u′(x,
∆y

2
, t) =

1

40

40
∑

i=1

u
′

(x,
∆y

2
, zi, t), (7.1)
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FIGURE 7.2: The complete (coarsest) mesh (top). A close up of the (finest)mesh around the
aperture (bottom).

with (x, ∆y
2 , zi) the position of thei-th microphone within an array. Time is made

dimensionless byh′/c, with c the speed of sound andh′ the dimensional duct height.
The array-averaging is done in order to filter out the plane-wave components of the
acoustic field. When we have a closer look at the upper part of figure (7.3) we observe
that the wave reaches the array of microphones located at (x = 0.5, y = ∆y/2,
z ∈ [1, 2]) with a delay time (att = 0.5, with the non-dimensional speed of sound
c = 1) as expected. Furthermore, at dimensionless timet = 5.5 the effect of the
incoming wave that originates from the right boundary of region 2 can be seen. This
effect is a slight modulation of the wave in terms of theu′ and aπ/2 phase shift
plus amplitude increase forp′ . The lower part of figure (7.3) shows the pressure and
velocity perturbations recorded at and averaged over the microphone array in region 1
(x = 0.5, y = ∆y/2, z ∈ [0, 1]). The wave arrives at this array att = 5.5. The array-
averaged perturbation velocityu′ shows an inverted sine wave moving to the left,
with the same frequency as the incoming wave, but with about half the amplitude.
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The array-averaged perturbation pressurep′ has the same reduced amplitude and has
a phase shift ofπ with respect to the velocity wave.

The time evolution of the pressure and velocity perturbations for the frequency
ω = 3

2ωc ( which is above the cut-off frequencyωc = π) is shown in figure (7.4) for
the same two arrays.

It is seen that in region 2 the interaction of the incomingu
′

wave and theu
′

wave
reflected from the plane of symmetry now results in an increase of the amplitudeby
50%. In region 1 the amplitude of the transmitted wave is about1/4 of that of the
incoming wave.

Figure (7.5) shows the comparison between the time histories of the array-averaged
pressure (top) and velocity (bottom) perturbations for two frequencies one below and
one above the cut-off frequencyωc = π This shows the differences in the interaction
patterns.

Figure (7.6) shows the comparison between the time histories of the array-averaged
pressure (top) and velocity (bottom) perturbations for three microphonesin the array
in region 2 for frequencyω = 3

2ωc. We observe that upon interaction with the wave
from the right the amplitude of the pressure perturbation varies inz-direction while
there is also a shift in the phase for the velocity perturbation.

The perturbations (on the mean flow variables) can be written in terms of left-
travelling and right-travelling components. For the array-averaged pressure perturba-
tion:

p′ = p+ + p−, (7.2)

and for the array-averaged velocity perturbation:

u′ = (p+ − p−)/ρ0c0, (7.3)

where the mean densityρ0 and the speed of soundc0 are non-dimensional and equal
to unity. With the help of equations (7.2) and (7.3) the reflection and transmission
coefficients of the waves can be evaluated . For the linear problem considered we can
write the reflection coefficientR, of the plane waves in region 2 as:

R =
p
′

2 − ρ0c0u
′

2

p
′

2 + ρ0c0u
′

2

, (7.4)

where array-averaged pressure and velocity perturbations arep
′

2 = p′(x = 0.5, y =
∆y
2 , t) andu′

2 = u′(x = 0.5, y = ∆y
2 , t), respectively, at the array in region 2 in

which z ∈ [1, 2]. The transmission coefficientT , of the plane waves in region 1 can
be expressed as:
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T =
p
′

1 − ρ0c0u
′

1

p
′

2 + ρ0c0u
′

2

, . (7.5)

where array-averaged pressure and velocity perturbations arep
′

1 = p′(x = 0.5, y =
∆y
2 , t) andu′

1 = u′(x = 0.5, y = ∆y
2 , t), respectively, at the array in region 2 in

whichz ∈ [0, 1].
Reflection and transmission coefficients R and T are shown in figure (7.7) showing

the ratios of the amplitudes of the reflected and transmitted plane waves that are
plotted versusω/ωc for the present slit width ofs/(h/2) = 0.125. Below the cut-off

frequencyωc =
(

2πc
h

)

= π we find an excellent agreement between numerical and
analytical results. Please note that because we consider plane waves, below the cut-
off frequency we haveR2 + T 2 = 1, from energy conservation. Above the cut-off
frequency this relationship does not hold because energy is transferred to a higher
non-planar mode.

In the left parts of figures (7.8 and 7.9) contour plots are shown for the pressure
perturbation in the planey = ∆y/2 for t = 0.5 to 7.5 while in the right parts the
pressure perturbation along the line (y = ∆y/2, z = 1.5), and the line (x = 3.0,
y = ∆y/2) are plotted, all forω = 3

4ωc, below thecut-offfrequency. This data is for
the mesh with120 × 1 × 80 elements inx−, y− andz−directions, respectively.

This data gives a clean overview of the diffraction of acoustic waves in theduct
with the slitted flat plate without mean flow. The sine wave moves in from the left
boundary and reflects from the plane of symmetryx = L = 3, with a reflected wave
in region 2 and a wave moving into region 1. The reflected wave appears asa more
or less planar wave, while the diffracted wave is much more two-dimensional.

Forω = 3
2ωc, above thecut-off frequency, similar contour plots are shown for the

same mesh in the left parts of figures (7.10 and 7.11) for the pressure perturbation
in the planey = ∆y/2 for t = 0.5 to 7.5 while in the right parts the pressure
perturbation along the line (y = ∆y/2, z = 1.5), and the line (x = 3.0, y = ∆y/2)
are plotted.

As in previous figures we can see the diffraction of acoustic waves in the duct with
slitted flat plate without mean flow. The sine wave moving in from the left boundary
reflects from the plane of symmetryx = L = 3. In the case of higher-frequency, i.e.
ω = 3

2ωc, the reflected wave contains higher-modes and appears as a non-planar wave
rather than a planar wave as in lower-frequency case. The diffractedwave moves in
to region 1 and is also two-dimensional.
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FIGURE 7.3: Time evolution of the pressure and velocity perturbations recorded (and av-
eraged over) the microphone array close to the boundary (top: mic(0.5,∆y/2, z ∈ [1, 2])
(Region 2), bottom: mic(0.5,∆y/2, z ∈ [0, 1]) (Region 1)) forω = 1

2
ωc. Numerical sim-

ulation with 4th-order (p = 3) method,120 × 1 × 80 mesh,∆x = 0.025, ∆y = 0.025,
∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 7.4: Time evolution of the pressure and velocity perturbations recorded (and av-
eraged over) the microphone array close to the boundary (top: mic(0.5,∆y/2, z ∈ [1, 2])
(Region 2), bottom: mic(0.5,∆y/2, z ∈ [0, 1]) (Region 1)) forω = 3

2
ωc. Numerical sim-

ulation with 4th-order (p = 3) method,120 × 1 × 80 mesh,∆x = 0.025, ∆y = 0.025,
∆z = 0.025, ∆t = 1.0 · 10−3.
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mesh,∆x = 0.025, ∆y = 0.025, ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 7.8: Left: Contour plots for the pressure perturbation in the planey = ∆y/2 for
t = 1.0 to 4.0. (ω = 3

4
ωc). Middle: Pressure perturbation along line (y = ∆y/2, z = 1.5).

Right: Pressure perturbation along line (x = 3.0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025,
∆t = 1.0 · 10−3.
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FIGURE 7.9: Left: Contour plots for the pressure perturbation in the planey = ∆y/2 for
t = 5.0 to 7.5. (ω = 3

4
ωc). Middle: Pressure perturbation along line (y = ∆y/2, z = 1.5).

Right: Pressure perturbation along line (x = 3.0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025,
∆t = 1.0 · 10−3.
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FIGURE 7.10:Left: Contour plots for the pressure perturbation in the planey = ∆y/2 for
t = 1.0 to 4.0. (ω = 3

2
ωc). Middle: Pressure perturbation along line (y = ∆y/2, z = 1.5).

Right: Pressure perturbation along line (x = 3.0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025,
∆t = 1.0 · 10−3.
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FIGURE 7.11:Left: Contour plots for the pressure perturbation in the planey = ∆y/2 for
t = 5.0 to 7.5. (ω = 3

2
ωc). Middle: Pressure perturbation along line (y = ∆y/2), z = 1.5.

Right: Pressure perturbation along line (x = 3.0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025,
∆t = 1.0 · 10−3.
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7.5 Duct Modes

At a given timet̂, the pressure perturbation can be transformed to the frequency
domain by writing

p′(x,∆y/2, z, t̂) = p̂(x, z, ω)eiωt̂. (7.6)

The duct modes for a channel as follow from the literature [88, 95] can be expressed
as

p̂(x, z, ω) =
∞
∑

n=0

cos(
nπz

h
)Ane

iknx, (7.7)

with

kn =

√

ω2

c20
−
(

nπ

h

)2

, (7.8)

whereh is the height of a single duct,c0 is the speed of sound,ω is the frequency
of the signal. Thenth term in the summation in equation (7.7) is called thenth duct
modeandAn is its modal amplitude. Modes for which

(

nπ
h

)2
> ω2

c2
0

are evanescent

modes while those for which
(

nπ
h

)2
< ω2

c2
0

are propagating modes. For a given fre-

quency there is a limited number of propagating modes, at least one being theplane
waveor fundamental modefor which n = 0. Forn > 0, if the frequencyω is be-
low the cut-off frequencywc = c0

nπ
h , the mode is evanescent, but above the cut-off

frequency the mode is propagating.
From the time-dependent pressure perturbation computed by the presentmethod

the modal amplitude can be derived as follows.
Write the perturbation pressure as

p′(x,∆y/2, z, t̂) =
∞
∑

n=0

Pn(x; t̂) cos

(

nπz

h

)

, (7.9)

so that

Pn(x; t̂) =
2

h

z/h=2
∫

z/h=1

p′(x,∆y/2, z, t̂) cos(
nπz

h
)dz. (7.10)

It can be shown that the integration in equation (7.10) leads to

Pn(x; t̂) = Ane
iωt̂eiknx. (7.11)
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ω λ1 (eq. 7.12) λ (fig. 7.12)
5/4π 2.667 2.738
3/2π 1.789 1.792
7/4π 1.392 1.401
2π 1.154 1.140

TABLE 7.1: Comparison of wavelengths calculated from equation (7.12)and the wave-
lengths measured from figure (7.12) forn = 1, c0 = 1, h = 1.

This implies that we find the wave numberkn of the duct mode by plotting, for a
given timet̂, Pn(x; t̂) and determining the wavelength of the waves, and there with
kn.

At a given timet̂ = 30, equation (7.10) is evaluated forx ∈ [3, 6] andPn(x; t̂) is
plotted in figure (7.12). It is clear from the figure that there are decayingmodes for
whichω < ωc = π and propagating modes for whichω > ωc = π.

The quantitykn in equation (7.7) is the wave number of the duct modes, i.e.kn =
2π
λn

, so that

λn =
2π

√

ω2

c2
0

− (nπ
h

)2
. (7.12)

In table (7.1) the evaluated values ofλn for n = 1, c0 = 1, h = 1 determined
from equation (7.12) are compared to the measured wave lengths from figure (7.12)
for various values ofω. The calculated wave lengths of the propagating modes are in
agreement with the wavelengths measured from figure (7.12).

7.6 Numerical Dispersion

It is discussed in Chapter 4 that the present method produces weak artificial waves
of small amplitude. In the line plots presented, they are not evident becausethe scale
is chosen in order to show the real waves. In the contour plots presented, they are not
evident because in the contour levels we did not include the zero-level ofthe pertur-
bation pressure. Figure (7.13) forω = 3

4ωc and figure (7.14) forω = 3
2ωc, presents

the contour plots including the zero-level. It shows that, originating from theslope-
discontinuity at the front of the incoming wave, waves propagating at a higher speed
thanc0 lead the acoustic wave and diffract at the slit in the plate.

7.7 Plate with slit inside infinite duct with mean flow

In this section the DG method is applied to a generic acoustic liner problem, dis-
cussed in the preceding sections, with mean flow. The mean flow profile is given
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FIGURE 7.12: Decaying and propagating duct modes (n = 1) computed from results for
p = 3, ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3, t̂ = 30.

as

M = M0f(z), (7.13)

with

f(z) =
1

2

(

1 − tanh

(

z − 1

θ

))

, (7.14)

whereθ denotes a momentum thickness, chosen asθ/h = 0.125. The profilef(z) is
given in figure (7.15).

The simulations are performed on a hexahedral mesh with240 × 1 × 80 elements
in x−, y− andz−directions, respectively, for a computational domain which is given
by x ∈ [−3, 3], y ∈ [−∆y/2,∆y/2] andz ∈ [0, 2]. The results are obtained for a
frequency ofω = 3

4π, aperture width ofs = 0.25 and the Mach number ofM0 = 0.1.
In the upper part of figure (7.16) the time histories of the pressure perturbation

is plotted showing a comparison between the result for the case without mean flow
(M0 = 0) and the one with mean flow (M0 = 0.1) at x = −2.5, y = 0.0, and
z = 1.5, while the lower part shows a detailed view. As expected, at the microphone
location the signal is observed earlier when the mean flow is present. It is also ob-
served that the amplitude has decreased while the observed frequency of the signal
does not change when the mean flow is introduced.

In the left parts of figures (7.17 and 7.18) contour plots are shown for the pressure
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FIGURE 7.13:Left: Contour plots for the pressure perturbation in the planey = ∆y/2 for
t = 1.0 to 7.5 including zero-level. (ω = 3

4
ωc). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 7.14:Left: Contour plots for the pressure perturbation in the planey = ∆y/2 for
t = 1.0 to 4.0 including zero-level. (ω = 3

2
ωc). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 7.15:The mean flow profile.

perturbation in the planey = ∆y/2 for t = 0.5 to 7.5 while in the right parts the
pressure perturbation along the line (y = ∆y/2, z = 1.5), and the line (x = 0.0,
y = ∆y/2) are plotted.

As in the case without mean flow (M0 = 0) we see the diffraction of acoustic
waves in the duct with the slitted flat plate. The sine waves entering the domain
from the left and right boundaries of the upper duct reach the geometricplane of
symmetry at slightly different times due to the mean flow, which is evident from the
non-symmetry of the left parts of the figures (7.17 and 7.18). The reflected wave is
seen in region 2 while a wave moves into region 1. Again, as in the case without
mean flow the reflected wave appears as a planar wave, while the diffracted wave is
two-dimensional.
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0.1) and without (M0 = 0.0) mean flow recorded atx = −2.5, y = ∆y/2 and z = 1.5
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FIGURE 7.17: Solution with mean flow (M0 = 0.1, ω = 3

4
π). Left: Contour plots for

the pressure perturbation in the planey = ∆y/2 for t = 1.0 to 4.0. Middle: Pressure
perturbation along line (y = ∆y/2, z = 1.5). Right: Pressure perturbation along line
(x = 3.0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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FIGURE 7.18: Solution with mean flow (M0 = 0.1, ω = 3

4
π). Left: Contour plots for

the pressure perturbation in the planey = ∆y/2 for t = 5.0 to 7.5. Middle: Pressure
perturbation along line (y = ∆y/2), z = 1.5. Right: Pressure perturbation along line
(x = 3.0, y = ∆y/2). ∆x = ∆y = ∆z = 0.025, ∆t = 1.0 · 10−3.
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8.1 Concluding Remarks

In this thesis the propagation of acoustic waves in non-uniform flows in three- dimen-
sional space is considered employing a higher-order discontinuous Galerkin method
on unstructured hexahedral grids.

The propagation of acoustic waves in non-uniform flows can be described by the
linearized Euler equations under the assumptions that there is no feedbackfrom the
acoustic field to the background flow field and that the distance of propagation is not
too large compared to the acoustic wave length.

The discontinuous Galerkin method has some remarkable advantages with respect
to flexibility in discretization of domains with complex geometries. The discontin-
uous Galerkin method is a highly compact finite-element projection method, which
provides a practical framework for the development of a higher-ordermethod, on
non-smooth unstructured grids, as desired for computational aeroacoustics ([9], [59],
[23], [24], [82], [83], [85]). In recent studies it has been shown that the spatial disper-
sion error is of order2p+3, while the spatial dissipation error is of order2p+2 ([60],
[50], [4]) with p the degree of the polynomial basis functions. In chapter 3, the higher-
order discontinuous Galerkin method is presented for solving the three-dimensional
linearized Euler equations on an unstructured hexahedral grid. The method has been
implemented for values ofp up top = 3.

In chapter 4, the convection of a Gaussian pulse in one-dimension is considered
with the present algorithm for three-dimensional wave propagation. The numeri-
cal results have been compared to the analytical solution. It has been shown that
using polynomial basis functions of higher-degree (> 1) within each element the
solution can be obtained with a higher accuracy. This implies that for a givenaccu-
racy a smaller number of elements in the solution domain maybe required. An error
analysis is performed by using not only the solution at the grid points but alsothe
reconstructed solution at points of an interrogation mesh employed to obtain anac-
curate approximation of the integral norm. It has been shown that the present method
is converging at a rate ofhp+1 for polynomial basis functions of degree 1,2 and 3
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and at a rate slightly higher thanhp+1/2 for polynomial basis functions of degree 0,
which agrees with the convergence rates derived in the literature, e.g. Ref. [60]. It
is remarkable that in the plot for the error as function of number of elements,in the
range of mesh sizes considered, the line of the orderp − 1 method is situated below
the one for the order-(p) method for anyp considered. It is also observed that in case
fewer points are used to approximate the integral norm, e.g. common grid pointsof
the coarsest or finest mesh considered (where the number of points used to evaluate
the integral norm is of the order of the number of grid points) the rate of convergence
for polynomial basis functions of degree 1 is abouth3, which might suggest that this
specific norm is based on some special points in the solution, namely, points close to
the intersection points.

In the low-storage Runge-Kutta time integration scheme four stages have been used
and performing a time-refinement study it is shown that the discontinuous Galerkin
method implemented is fourth-order accurate in time, as expected for this linear prob-
lem.

The present method produces weak waves of small amplitude introduced bythe
numerics. Originating from the slope-discontinuity at the fronts of the initial wave,
wave propagating at a higher speed thanc0 lead the acoustic wave. It is shown in
chapter 4 that the numerical dispersion of the method obtained from the numerical
solutions is in good agreement with the numerical dispersion relation for the dis-
continuous Galerkin method applied to a one-dimensional model problem by Blom
[25].

CPU-time requirements for the method, using polynomial basis functions of degree
1, 2 and 3, have been determined and a required number of elements and order of
accuracy optimization table has been presented.

The problem of acoustic radiation from a vibrating wall segment is solved and the
results of the present method are compared to the results obtained by the unstructured
tetrahedral grid method developed by Blom [25]. It is concluded that the discontinu-
ous Galerkin method applied on hexahedral elements appears faster forh → 0 than
the method applied on tetrahedral elements.

The effect of grid distortion is investigated by considering two types of distorted
grids: skewed and randomly distorted grids. For the case of a randomly-distorted
mesh the effect of the distortion on the difference between the solution with and the
solution without distortion is relatively large. This is attributed to the fact that in the
present implementation the mapping of the elements from physical to computational
space is assumed to be linear.

The method is applied to a generic acoustic liner problem, i.e. the acoustics of a flat
plate with a slit placed in a duct. The results for quiescent background arecompared
to the analytical solution obtained by Kooijman [64]. It is shown that the ratios of the
amplitudes of the reflected and transmitted plane waves are in good agreementwith
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the analytical results. The results obtained for which a background flow ispresent is
compared to the results obtained for a quiescent background.

8.2 Recommendations

Although a general derivation of the method is given in chapter 3, the discontinuous
Galerkin method implemented assumes a piecewise constant background flow.In the
considered verification problems the background flow is uniform. In order to apply
the method to more general, non-uniform background flows, it is recommended to
extend the implementation to account for strongly varying background flows.

In this thesis only characteristic-based non-reflecting boundary conditions have
been applied. It is known from the literature that these boundary conditions may
result in numerically induced reflections which may contaminate the solution at later
times. It is recommended to analyze the performance of other types of boundary
conditions such as perfectly matched layers (PML) or sponge layers.

In this thesis an unstructured hexahedral mesh is used and in the implementation
it is assumed that the mapping from the element to the unit element is linear. This
implies that in order to achieve higher-order accuracy forp > 1, formally the shape
of the hexahedral elements is restricted to a parallelepiped. Although in chapter 3
the more general case is considered of a high-order approximation of themapping it
is not implemented in the numerical algorithm. It is recommended to investigate the
higher-order approximation for the mapping in order to attack problems involving
meshes with non-parallelepiped elements using the method forp > 1. Furthermore
it is recommended to implement the discontinuous Galerkin method applied on a
hybrid grid consisting of both tetrahedral and hexahedral elements. Thiswill result
in a more versatile method.
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TRANSFORMATION TO

COMPUTATIONAL SPACE

A.1 The transformation from the physical to the computa-
tional space

Vectors tangential to theξ, η, ζ coordinate lines are∂~x
∂ξ , ∂~x

∂η , ∂~x
∂ζ , respectively, denoted

by ~xξ, ~xη, ~xζ , respectively, the so-called co-variant directions.
The surfaceξ = constant, η = constant, ζ = constant have their normal in the

direction~xη × ~xζ , −~xξ × ~xζ , ~xξ × ~xη respectively.
From differentiatingx = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ) with respect to

x, we find ∂ξ
∂x , ∂η

∂x , ∂ζ
∂x in terms of~xξ, ~xη and~xζ . Differentiation with respect toy

yields ∂ξ
∂y , ∂η

∂y , ∂ζ
∂y . Differentiation with respect toz yields ∂ξ

∂z , ∂η
∂z , ∂ζ

∂z . An example:










1 = xξξx + xηηx + xζζx
0 = yξξx + yηηx + yζζx
0 = zξξx + zηηx + zζζx

⇒











ξx = (yηzζ − yζzη)/|J |
ηx = −(yξzζ − yζzξ)/|J |
ζx = (yξzη − yηzξ)/|J |

(A.1)

where,

J =







xξ xη xζ

yξ yη yζ

zξ zη zζ






≡ ∂(x, y, z)

∂(ξ, η, ζ)
, (A.2)

and,
|J | = det(J) = ~xξ · (~xη × ~xζ). (A.3)

This leads to the expression for the normal directions on the surfaceξ = constant,
which is ~∇ξ, that for the surfaceη = constant, which is ~∇η and finally that for the
normal direction on the surfaceζ = constant, which is~∇ζ:

~∇ξ = (~xη × ~xζ)/|J |
~∇η = −(~xξ × ~xζ)/|J |
~∇ζ = (~xξ × ~xη)/|J |

(A.4)



154 APPENDIX A. TRANSFORMATION TO COMPUTATIONAL SPACE

These vectors give the so-called contra-variant vectors.

A.1.1 Transformation of ~∇~x to ~∇~ξ

In case we have~∇~xf we find

∂f
∂x = ∂f

∂ξ ξx + ∂f
∂η ηx + ∂f

∂ζ ζx
∂f
∂y = ∂f

∂ξ ξy + ∂f
∂η ηy + ∂f

∂ζ ζy
∂f
∂z = ∂f

∂ξ ξz + ∂f
∂η ηz + ∂f

∂ζ ζz

⇒ ~∇~xf = J−1~∇~ξ
f, (A.5)

with

J−1 =







ξx ξy ξz
ηx ηy ηz

ζx ζy ζz






≡ ∂(ξ, η, ζ)

∂(x, y, z)
; |J−1| = ~∇ξ · (~∇η × ~∇ζ) =

1

|J | (A.6)

A.1.2 Transformation of an infinitesimal volume element

dΩ = dxdydz in Cartesian coordinates

= ~xξ · (~xη × ~xζ)dξdηdζ in (ξ, η, ζ) coordinates

= |J |dξdηdζ
= |J |dΩ̂ (A.7)

A.1.3 Transformation of a vector

Any vector~a can be expressed in terms of the three vectors~eξ, ~eη and~eζ as:

~a =
~a · (~eη × ~eζ)

|J | ~eξ +
~a · (~eξ × ~eζ)

|J | ~eη +
~a · (~eξ × ~eη)

|J | ~eζ

= aξ~eξ + aη~eη + aζ~eζ (A.8)

which can also be written as:






aξ

aη

aζ






= J−1







ax

ay

az






, (A.9)

or,

~a = ax~ex + ay~ey + az~ez

= aξ~eξ + aη~eη + aζ~eζ (A.10)
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B.1 Bilinear transformation

ξ

η

(−1,1)

(1,−1)

(1,1)

(−1,−1)z

x(ξ,1)x

x (−1,η)

(1,η)

y

x

x (ξ,−1)

FIGURE B.1: Transformation of a 2D surface.

Bilinear transformation from the physical space to the computational plane can be
constructed as follows:

~x(ξ̄,−1) = ~x(−1,−1)Q1(ξ) + ~x(1,−1)Q2(ξ),

~x(ξ̄, 1) = ~x(−1, 1)Q1(ξ) + ~x(1, 1)Q2(ξ),

~x(−1, η̄) = ~x(−1,−1)Q1(η) + ~x(−1, 1)Q2(η),

~x(1, η̄) = ~x(1,−1)Q1(η) + ~x(1, 1)Q2(η). (B.1)

Combining the above equations we can derive the following relation:

~x(ξ̄, η̄) = ~x(−1,−1)Q1(ξ)Q1(η) + ~x(1,−1)Q2(ξ)Q1(η)

+~x(−1, 1)Q1(ξ)Q2(η) + ~x(1, 1)Q2(ξ)Q2(η) (B.2)

with,

Q1(ξ̄) =
1 − ξ̄

2
, Q2(ξ̄) =

1 + ξ̄

2
,

Q1(η̄) =
1 − η̄

2
, Q2(η̄) =

1 + η̄

2
. (B.3)
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Finally we get for the bilinear coordinate transformation:

~x(ξ̄, η̄) = ~x(−1,−1)
(1 − ξ̄)(1 − η̄)

4
+ ~x(1,−1)

(1 + ξ̄)(1 − η̄)

4

+~x(−1, 1)
(1 − ξ̄)(1 + η̄)

4
+ ~x(1, 1)

(1 + ξ̄)(1 + η̄)

4
. (B.4)

B.2 Trilinear transformation

(−1,−1,ζ)x

(−1,η,1)

x

(1,−1,ζ)x

x

(−1,1,ζ) (ξ,1,1)x
x (1,1,ζ)

ξ

ζ

η

y

z

(1,η,−1)x
x

(1,η,1)x

(−1,η,−1)

(ξ,1,−1)

(ξ,−1,−1)x

x

x

(ξ,−1,1)x

FIGURE B.2: Trilinear transformation of a 3D volume element.

Trilinear transformation from the physical to the computational space can becon-
structed as follows:

~x(ξ,−1,−1) = ~x(−1,−1,−1)Q1(ξ) + ~x(1,−1,−1)Q2(ξ),

~x(ξ, 1,−1) = ~x(−1, 1,−1)Q1(ξ) + ~x(1, 1,−1)Q2(ξ),

~x(ξ,−1, 1) = ~x(−1,−1, 1)Q1(ξ) + ~x(1,−1, 1)Q2(ξ),

~x(ξ, 1, 1) = ~x(−1, 1, 1)Q1(ξ) + ~x(1, 1, 1)Q2(ξ),

~x(−1, η,−1) = ~x(−1,−1,−1)Q1(η) + ~x(−1, 1,−1)Q2(η),

~x(1, η,−1) = ~x(1,−1,−1)Q1(η) + ~x(1, 1,−1)Q2(η),

~x(−1, η, 1) = ~x(−1,−1, 1)Q1(η) + ~x(−1, 1, 1)Q2(η),

~x(1, η, 1) = ~x(1,−1, 1)Q1(η) + ~x(1, 1, 1)Q2(η),

~x(−1,−1, ζ) = ~x(−1,−1,−1)Q1(ζ) + ~x(−1,−1, 1)Q2(η),

~x(1,−1, ζ) = ~x(1,−1,−1)Q1(ζ) + ~x(1,−1, 1)Q2(η),

~x(−1, 1, ζ) = ~x(−1, 1,−1)Q1(ζ) + ~x(−1, 1, 1)Q2(η),

~x(1, 1, ζ) = ~x(1, 1,−1)Q1(ζ) + ~x(1, 1, 1)Q2(η). (B.5)

Combining the above equations we can derive the following relation:

~x(ξ, η, ζ) = ~x(−1,−1,−1)Q1(ξ)Q1(η)Q1(ζ) + ~x(1,−1,−1)Q2(ξ)Q1(η)Q1(ζ)
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+~x(−1, 1,−1)Q1(ξ)Q2(η)Q1(ζ) + ~x(1, 1,−1)Q2(ξ)Q2(η)Q1(ζ)

+~x(−1,−1, 1)Q1(ξ)Q1(η)Q2(ζ) + ~x(1,−1, 1)Q2(ξ)Q1(η)Q2(ζ)

+~x(−1, 1, 1)Q1(ξ)Q2(η)Q2(ζ) + ~x(1, 1, 1)Q2(ξ)Q2(η)Q2(ζ)

(B.6)

with,

Q1(ξ) =
1 − ξ

2
, Q2(ξ) =

1 + ξ

2
,

Q1(η) =
1 − η

2
, Q2(η) =

1 + η

2
,

Q1(ζ) =
1 − ζ

2
, Q2(ζ) =

1 + ζ

2
. (B.7)

Finally we get for the trilinear coordinate transformation:

~x(ξ, η, ζ) = ~x(−1,−1,−1)
(1 − ξ)(1 − η)(1 − ζ)

8

+~x(1,−1,−1)
(1 + ξ)(1 − η)(1 − ζ)

8

+~x(−1, 1,−1)
(1 − ξ)(1 + η)(1 − ζ)

8

+~x(1, 1,−1)
(1 + ξ)(1 + η)(1 − ζ)

8

+~x(−1,−1, 1)
(1 − ξ)(1 − η)(1 + ζ)

8

+~x(1,−1, 1)
(1 + ξ)(1 − η)(1 + ζ)

8

+~x(−1, 1, 1)
(1 − ξ)(1 + η)(1 + ζ)

8

+~x(1, 1, 1)
(1 + ξ)(1 + η)(1 + ζ)

8
. (B.8)
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SUMMARY

The propagation of acoustic waves in non-uniform flow in three-dimensional space
is investigated by means of a numerical method based on the discontinuous Galerkin
finite-element formulation. The propagation of acoustic waves in non-uniform flows
can be described by the linearized Euler equations under the assumptions that there
is no feedback from the acoustic field to the background flow field and the distance
of propagation is not too large compared to the acoustic wave lengths.

The discontinuous Galerkin method has some remarkable advantages with respect
to flexibility in discretization of domains with complex geometries. The discontin-
uous Galerkin method is a highly compact finite-element projection method which
provides a practical framework for the development of higher-order methods desired
for computational aeroacoustics on non-smooth unstructured grids, as discussed in
the literature. In the present study the higher-order discontinuous Galerkin method
is presented for solving the three-dimensional Linearized Euler Equationson an un-
structured hexahedral grid.

The implementation of the method is verified by considering the convection of a
Gaussian pulse in one-dimension, with the present three-dimensional numerical al-
gorithm, and comparing the numerical results to the analytical solution. The numeri-
cal results have been obtained using polynomial basis functions in the discontinuous
Galerkin method of degree≤ 3. It has been shown that using polynomial basis func-
tions of higher-degree (> 1) the solution can be reconstructed with a higher accuracy
within each element, which implies that for given accuracy fewer elements maybe
required in the solution domain. An error analysis has been performed using not
only the solution at the grid points but also the reconstructed solution at grid points
of the interrogation mesh, this to obtain an accurate approximation of the integral
norm. It shows that the method is converging at a rate ofhp+1 for polynomial basis
functions of degree 1,2 and 3 and at a rate slightly higher thanhp+1/2 for polynomial
basis functions of degree 0, which agrees with the convergence rates derived in the
literature. It is remarkable that in the range ofh considered the line of the orderp
method is situated below the one for the order-(p − 1) method for anyp considered.
It is also observed that in case fewer points are used to evaluate theL2-norm, e.g.
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common grid points of the coarsest or finest mesh considered (where the number of
points used to evaluate theL2 norm is of the order of the number of grid points) the
rate of convergence for polynomial basis functions of degree 1 is about h3 which
might suggest that this specific norm is based on some special points in the solution,
namely, points close to the intersection points of analytical and numerical solution.

The low-storage Runge-Kutta time integration scheme with four stages has been
used. Performing a time-refinement study showed that the Discontinuous Galerkin
method implemented is fourth-order accurate in time which is as expected for this
linear problem.

The present method produces weak waves of small amplitude introduced bythe
numerics. Originating from the slope-discontinuity at the fronts of the initial wave,
waves propagating at a higher speed thanc0 lead the acoustic wave. It is shown that
the numerical dispersion of the method obtained from the numerical solutions obeys
the numerical dispersion relation for the discontinuous Galerkin method found earlier
by Blom for a one-dimensional model problem.

CPU-time requirements for the methods, using polynomial basis functions of de-
gree 1, 2 and 3, to reach a certain dimensionless time, for a certain error-level condi-
tion are discussed and the required number of elements and order of accuracy opti-
mization table is given for the test problem considered.

The acoustic radiation from a vibrating wall segment in a duct is numerically sim-
ulated as a second verification problem. The results obtained are comparedto the
results obtained by the DG method developed by Blom for a tetrahedral grid.It is
concluded that the discontinuous Galerkin method applied on a mesh consistingof
hexahedral elements appears faster forh → 0 than the method applied on a mesh
consisting of tetrahedral elements.

The effects of grid distortion is investigated solving the problem of acoustic ra-
diation from a vibrating wall segment in a duct. Two types of distorted grid have
been considered: skewed and randomly distorted grids. It is shown thatthe method is
able to handle problems involving grid irregularities up to certain skewness/distortion
levels.

As a validation problem the method is applied to a generic acoustic liner problem,
i.e. acoustics of a flat plate with a slit placed in a 2D duct. The results for quiescent
background is compared to the analytical solution obtained by Kooijman. It is shown
that the ratios of the amplitudes of the reflected and transmitted plane waves arein
good agreement with the analytical results. Furthermore results are presented for the
case where a mean flow is present. The results are compared to results obtained for a
quiescent background.



SAMENVATTING

De voortplanting van akoestische golven in niet-uniforme driedimensionale stromin-
gen is onderzocht door middel van een numerieke methode die is gebaseerd op de
Discontinue Galerkin Eindige-Elementen formulering, geı̈mplementeerd op een niet-
gestructureerd rekenrooster bestaande uit hexahedra. De voortplanting van akoestis-
che golven in niet-uniforme stromingen wordt beschreven met de gelineariseerde
Euler vergelijkingen voor het perturbatie druk-, snelheids- en dichtheidsveld op een
niet-uniforme tijdsgemiddelde stromingsveld. Deze linearisatie is geldig onder de
aannames dat er geen terugkoppeling is van het akoestische veld naar het tijdsgemid-
delde stromingsveld en dat de afstand waarover het geluid zich voortplant niet te
groot is ten opzichte van de akoestische golflengte.

De Discontinue Galerkin (DG) Eindige Elementenmethode heeft opmerkelijke vo-
ordelen wat betreft flexibiliteit in de keuze van de discretisatie van rekendomeinen
om geometrisch complexe configuraties. De methode is een uiterst compacte eindige-
elementen projectie formulering. Voor een aëro-akoestische rekenmethode biedt de
DG formulering een praktisch raamwerk voor de ontwikkeling van een hogere-orde
methode voor niet-gestructureerde niet-gladde rekenroosters. In dit proefschrift wordt
een hogere-orde DG methode gepresenteerd voor het numeriek oplossen van de gelin-
eariseerde Euler vergelijkingen op een niet-gestructureerd rekenrooster bestaande uit
hexahedra.

De implementatie van de rekenmethode is geverifieerd aan de hand van de nu-
merieke simulatie, met de rekenmethode voor driedimensionale golfvoortplanting,
van de convectie van een eendimensionale Gaussische puls. De resultatenvan de nu-
merieke simulatie, met de methode gebaseerd op DG formulering voor graadp = 3,
zijn vergeleken met die van de analytische oplossing. De vergelijking geeftaan dat,
gebruikmakend van basis functies van hogere orde (> 1), de oplossing, voor een vast
aantal elementen, met een hogere graad van nauwkeurigheid kan worden berekend,
of dat voor een gekozen niveau van nauwkeurigheid het aantal elementen waarin het
rekengebied is opgedeeld kan worden beperkt. Voor de methoden die gebruikmaken
van polynoom basisfuncties van de graadp = 1, 2 en 3 zijn de benodigde reken
(CPU) tijd bepaald om in een testgeval de golfvoortplanting tot een bepaald tijdstip
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numeriek te simuleren, dit op een aantal rekenroosters van toenemende resolutie.
Deze informatie kan worden gebruikt om bij de toepassing van de rekenmethode,
voor een gekozen niveau van nauwkeurigheid, een optimale keuze te maken van de
resolutie van het rekenrooster en de orde van de methode.

Er is een foutenanalyse uitgevoerd waarin de integraalnorm is bepaald meteen
numerieke integratie waarin het aantal punten veel groter is dan het aantal punten
van het rekenrooster, dit om een nauwkeurigheid van de benaderingvan de integraal-
norm op te voeren. Deze analyse laat zien dat de methode convergeertalshp+1 voor
polynoom basis functies van orde1, 2 en3. Voor p = 1 is de convergentiesnelheid
iets hoger danhp+1/2. Dit is in overeenstemming met de waarden gevonden in de
literatuur. Het is opmerkelijk dat, voor dehs beschouwd, de fout voor dep−de orde
methode altijd kleiner is dan die voor de (p− 1)-ste orde methode. Het is ook gecon-
stateerd dat in geval dat er minder punten worden gebruikt voor het benaderen van
deL2-norm, bijvoorbeeld het aantal punten van het fijnste of van het grofstereken-
rooster, de convergentiesnelheid van dep = 1 methode gelijk is aanh3, hetgeen de
suggestie wekt dat de benadering van die specifieke norm gebruik maakt van speciale
punten, namelijk punten die dicht bij de punten liggen waar de numerieke oplossing
de analytische oplossing snijdt.

In de numerieke methode wordt gebruik gemaakt van het ”low-storage” 4-staps
Runge-Kutta tijdsintegratieschema. Een studie naar de afhankelijkheid van de fout
van de tijdstap heeft aangetoond dat de implementatie van de tijdsintegratie in de
huidige DG-methode is inderdaad vierde-orde nauwkeurig is in tijd.

Als gevolg van de numerieke benaderingen in de methode genereert de huidige
rekenmethode zwakke golven met een kleine amplitude. Deze golven hebbenhun
oorsprong in discontinuı̈teiten (in functiewaarde, eerste afgeleide) in de golf die als
beginwaarde wordt gekozen. Uitgaande van zulke discontinuteiten ontspringen er
pseudo-akoestische golven die zich met een hogere snelheid voortplanten dan de
geluidssnelheid. Het kon worden gedemonstreerd dat de voortplantingssnelheid van
deze golven voldoet aan de dispersierelatie van de huidige methode, zoalsdie is
afgeleid door Blom in een eerder proefschrift.

Het testgeval van de akoestische radiatie van een bewegend wandsegment in een
kanaal is gebruikt als tweede verificatie, via de vergelijking van de resultaten van de
huidige methode met de methode van Blom: de DG methode geı̈mplementeerd voor
niet-gestructureerde rekenroosters bestaande uit tetrahedra. De conclusie van deze
vergelijking is dat de huidige methode voor rekenroosters bestaand uit hexahedra is
sneller voorh → 0 dan de methode voor rekenroosters bestaande uit tetrahedra. Om
een indruk te krijgen van het effect van de vervorming (afwijking van orthogonaliteit)
van het rekenrooster op de nauwkeurigheid van de numerieke oplossing zijn twee
soorten vervorming bestudeerd: scheve rekenroosters en oorspronkelijk orthogonale
rekenroosters waarvan de coordinaten van de roosterpunten random zijn verstoord.
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Deze studie laat zijn dat de huidige methode onregelmatigheden in het rekenrooster
aankan, maar dat de nauwkeurigheid van de oplossing afhangt van degrootte van de
onregelmatigheid.

Als validatie wordt het testgeval bestudeerd van een generiek probleemvan een
akoestisch-gedempte wand (”acoustic liner”). Het betreft een vlakke plaat met een
spleet, geplaatst in een kanaal. De plaat is in het midden van het kanaal geplaatst. De
spleet is halverwege het kanaal en de richting van de spleet is loodrecht op de mid-
dellijn van het kanaal. Vanuit beide einden van het kanaal wordt een akoestische golf
het kanaal ingestuurd. De tijdsafhankelijke voortplanting en diffractie van de randen
van de spleet wordt numeriek gesimuleerd en resultaten worden vergeleken met de
analytische oplossing verkregen door Kooijman. De resultaten betreffenonder meer
de verhouding van de amplitude van de gereflecteerde golf en die van de getransmit-
teerde golf. Voor het geval zonder hoofdstroming wordt een goede overeenstemming
tussen de analytische en de numerieke resultaten bereikt. Voor het gevalmet stroming
worden de numerieke resultaten vergeleken met die voor het geval zonder hoofdstro-
ming.
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Hüseyin is married to Belgin and they have a daughter, Duru, who was born in
may4th 2002.


